Objective: 5-Aminoisoquinolinone, a water-soluble, potent inhibitor of the activity of poly (adenosine 5'-diphosphate ribose) polymerase, plays an important role in the tissue injury associated with ischaemia-repe...Objective: 5-Aminoisoquinolinone, a water-soluble, potent inhibitor of the activity of poly (adenosine 5'-diphosphate ribose) polymerase, plays an important role in the tissue injury associated with ischaemia-reperfusion injury and inflammation by inhibiting the activity of poly (adenosine 5'-diphosphate ribose) polymerase and the expression of cell adhesion molecules such as ICAM-1, P-selectin et al. But how about it in the tumor is not clear. The aim of the present study was to study the effects of 5-Aminoisoquinolinon on the adhesion of colon carcinoma line HT-29 cells to human umbilical vein endothelial cells; and the effects of 5-Aminoisoquinolinon on the expression of ICAM-1, P-selectin and the activity of poly (adenosine 5'-diphosphate ribose) polymerase in colon carcinoma HT-29 cells. Methods: The adhesion of HT-29 cells to human umbilical vein endothelial cells was detected by adhesive experiment. Immunocytochemically Streptavidin-Peroxidase method was used to investigate the expression of ICAM-1, P-selectin and Poly (adenosine 5'-diphosphate ribose)( the product of poly (adenosine 5'-diphosphate ribose) polymerase activation). Results: the results of the adhesion assay of HT-29 cells to HUVEC showed that the OD570 value in each 5-AIQ-treated group was significant lower than that in the control group (5-AIQ-untreated) in a dose-dependent manner. The expression of ICAM-1, P-selectin and Poly (adenosine 5'-diphosphate ribose) was significant lower in 5-Aminoisoquinolinone-treated HT-29 cell group than that in 5-Aminoisoquinolinoneuntreated groups. Conclusion: The data suggest that 5-Aminoisoquinolinone can inhibit the adhesion of HT-29 cells to human umbilical vein endothelial cells. 5-Aminoisoquinolinone also can inhibit poly (adenosine 5'-diphosphate ribose) polymerase activation and the expressions of ICAM-1 and P-selectin in HT-29 cells. 5-Aminoisoquinolinone probably contributes to the prevention of tumor cell metastasis. Further study is needed.展开更多
The prevalence of metabolic dysfunction-associated steatotic liver disease(MASLD)has increased significantly in recent decades and is projected to increase further due to the rising obesity rates.MASLD patients are at...The prevalence of metabolic dysfunction-associated steatotic liver disease(MASLD)has increased significantly in recent decades and is projected to increase further due to the rising obesity rates.MASLD patients are at higher risk of developing advanced liver diseases“cirrhosis and hepatocellular carcinoma”as well as liver-or cardiovascular-related mortality.Existing lipid-lowering therapies failed to reduce the risk of mortality in these patients.Therefore,there is an urgent need for pharmacotherapies that can control and even reverse this disease.Fanlian Huazhuo Formula(FLHZF)is a combination herbal preparation,and its various individual constituents regulate hepatic lipid metabolism,adipose tissue inflammation,and gut microbiota.Despite,these useful effects,limited information is available on its benefits in diet-induced hepatosteatosis.In this article,we discuss the research findings recently published about the therapeutic effects of FLHZF in suppressing MASLD development and underlying mechanisms.Utilizing a series of in vitro and in vivo experiments,the authors demonstrated for the first time that FLHZF suppresses MASLD in male mice possibly by inhibiting hepatic de novo lipogenesis pathways and reducing hepatocyte death.This study paves the way for future investigations aimed at investigating FLHZF’s role in inhibiting lipogenesis particularly using radioactively-labeled glucose and acetate,and governing hepatocyte mitochondrial function,gut microbiome profile,and its effects in other models of MASLD,and female mice.展开更多
Specific oligonucleotides such as telomere DNA and aptamer often undergo conformational changes upon ligand binding. Composite reagent composed of o-phthalaldehyde and β-mercaptoethanol(OPAME) has been extensively ...Specific oligonucleotides such as telomere DNA and aptamer often undergo conformational changes upon ligand binding. Composite reagent composed of o-phthalaldehyde and β-mercaptoethanol(OPAME) has been extensively applied to fluorescent detection of amino compounds based on the reaction of primary amino-group, herein we proposed a general spectrofluorometry for ions and small molecules due to conformational changes upon ligand binding taking K^+ and ATP as examples. In a borate controlled buffer medium, telomere DNA could react with OPAME, giving a thio-subtituted isoindole compound with strong fluorescence emission at 455 nm when excited at 340 nm. It was found that however, the fluorescence emission was greatly reduced in the presence of K^+ since the formation of the quadruplex structure inhibits the reaction activity of amino-groups of telomere DNA. In order to testify the general application of OPAME reagent based on the conformational change of oligonucleotides, we further proposed a sensitive method of ATP based on its highly selective interaction with ATP-aptamer. The above mentioned applications show that the spectrofluorometry with the aid of OPAME reagent is simple, label free that is expected to be potentially general for DNA conformational change-based target detection.展开更多
In this paper, the increase of cellular cAMP and cGMP levels in macrophages induced bypppA2'p5'A2'p5'A (briefly 2'-5'P_3A_3) is first reported. The optimal concentration of 2'-5'P_3A_3 ...In this paper, the increase of cellular cAMP and cGMP levels in macrophages induced bypppA2'p5'A2'p5'A (briefly 2'-5'P_3A_3) is first reported. The optimal concentration of 2'-5'P_3A_3 for the elevation of cellular cGMP to the highest level is 10^(-7)-10^(-6)mol/L, while thatfor cAMP is 10^(-7)mol/L. The time for cGMP to reach its peak value is 15 min and that forcAMP is 2 h, when the cells are treated with 2'-5' P_3A_3 at 10^(-7)mol/L, which is the optimalconcentration for developing biological effect of macrophages (phagocytosis). These resultssuggest that cGMP and cAMP may be related to, or may be the mediators for, 2'-5'P_3A_3action.展开更多
The air-liquid interface(ALI)culture is a kind of recently developed system,which has proved its availability in simulating the biology of respiratory tract epithelial tissues.In this study,an ALI-based mouse primary ...The air-liquid interface(ALI)culture is a kind of recently developed system,which has proved its availability in simulating the biology of respiratory tract epithelial tissues.In this study,an ALI-based mouse primary olfactory epithelial cell(OEC)model was established to perform the exposure of PM_(2.5)(PM=particulate matter)collected from Dianshan Lake(Shanghai)and Wangdu(Hebei).The results showed that PM_(2.5)in both regions caused a decrease in cell viability in a dose-dependent manner.The 0.5 and 5µg/cm^(2)(around ambient concentrations)of PM_(2.5)disrupted OEC membrane integrity and produced oxidative stress with elevated indicators of malondialdehyde(MDA)and reactive oxygen species(ROS).In transcriptomic sequencing,the terms concerning inflammatory cytokines and second messenger cyclic adenosine-3′,5′-monophoshate(cAMP)were enriched in two treatments.The cytokine array showed the levels of some cytokines were altered,although inflammatory responses may not remarkably occur.Meanwhile,PM_(2.5)disturbed cAMP contents and key genes in the cAMP signaling pathway.The effects of PM_(2.5)of both regions were largely consistent,while Wangdu samples caused more ROS and Dianshan Lake samples tended to induce inflammatory injury.Thus,with the application of a novel ALI-based in vitro OEC model,our study demonstrated that ambient PM_(2.5)has the ability to threaten the physiologies and functions of the olfactory system.展开更多
It has been suggested that the energy required for sperm motility is produced by oxidative phosphorylation while glycolysis seems to be an important source for ATP transmission along the flagellum. Some studies have i...It has been suggested that the energy required for sperm motility is produced by oxidative phosphorylation while glycolysis seems to be an important source for ATP transmission along the flagellum. Some studies have investigated the chemical and kinetic properties of the enzyme glyceraldehyde 3-phosphate dehydrogenase to identify any changes in the regulation of glycolysis and sperm motility. In contrast, there are few studies analyzing the genetic basis of hypokinesis. For this reason, we investigated the glyceraldehyde 3-phosphate dehydrogenase gene in human sperm to evaluate whether asthenozoospermia was correlated with any changes in its expression. Semen examination and glyceraldehyde 3-phosphate dehydrogenase gene expression studies were carried out on 116 semen samples divided into two groups - Group A consisted of 58 normokinetic samples and Group B of 58 hypokinetic samples. Total RNA was extracted from spermatozoa, and real-time PCR quantification of mRNA was carried out using specific primers and probes. The expression profiles for the Groups A and B were very similar. The mean delta Ct was as follows - Group A, 5.79 + 1.04; Group B, 5.47 + 1.27. Our study shows that in human sperm, there is no difference in glyceraldehyde 3-phosphate dehydrogenase gene expression between samples with impaired motility and samples with normal kinetics. We believe that this study could help in the understanding of the molecular mechanisms of sperm kinetics, suggesting that hypomotility may be due to a possible posttranscriptional impairment of the control mechanism, such as mRNA splicing, or to posttranslational changes.展开更多
In this paper, some new results on the selective weak interaction between Na-4-tosyl-L-arginine methyl ester hydrochloride (TAME) and adenosine-5'-triphosphate (ATP) have been reported. Fluorescence spectrophotom...In this paper, some new results on the selective weak interaction between Na-4-tosyl-L-arginine methyl ester hydrochloride (TAME) and adenosine-5'-triphosphate (ATP) have been reported. Fluorescence spectrophotometry and Fourier transform infrared (FT-IR) spectroscopy were used to investigate this kind of weak interaction. In fluorescence experiments, obvious fluorescence quenching phenomena were observed when TAME was added, which indicated the weak interactions between TAME and ATP. It has been identified by fluorescence titration experiments that TAME exhibited high selectivity to ATP over ADP and AMP. FT-IR spectral results showed that an ATP-TAME adduct was formed. The experimental results indicated that the interaction sites were the guanidinium group of TAME main-chain and the γ-phosphate group of ATP, and the interaction took place through hydrogen bonding and electrostatic force. In addition, the effects of metal ions on the weak interaction between ATP and TAME, or between ATP and analogues of L-arginine were studied.展开更多
基金Natural Science Foundation Project of CQ CSTC (CSTC, 2006BB5288)
文摘Objective: 5-Aminoisoquinolinone, a water-soluble, potent inhibitor of the activity of poly (adenosine 5'-diphosphate ribose) polymerase, plays an important role in the tissue injury associated with ischaemia-reperfusion injury and inflammation by inhibiting the activity of poly (adenosine 5'-diphosphate ribose) polymerase and the expression of cell adhesion molecules such as ICAM-1, P-selectin et al. But how about it in the tumor is not clear. The aim of the present study was to study the effects of 5-Aminoisoquinolinon on the adhesion of colon carcinoma line HT-29 cells to human umbilical vein endothelial cells; and the effects of 5-Aminoisoquinolinon on the expression of ICAM-1, P-selectin and the activity of poly (adenosine 5'-diphosphate ribose) polymerase in colon carcinoma HT-29 cells. Methods: The adhesion of HT-29 cells to human umbilical vein endothelial cells was detected by adhesive experiment. Immunocytochemically Streptavidin-Peroxidase method was used to investigate the expression of ICAM-1, P-selectin and Poly (adenosine 5'-diphosphate ribose)( the product of poly (adenosine 5'-diphosphate ribose) polymerase activation). Results: the results of the adhesion assay of HT-29 cells to HUVEC showed that the OD570 value in each 5-AIQ-treated group was significant lower than that in the control group (5-AIQ-untreated) in a dose-dependent manner. The expression of ICAM-1, P-selectin and Poly (adenosine 5'-diphosphate ribose) was significant lower in 5-Aminoisoquinolinone-treated HT-29 cell group than that in 5-Aminoisoquinolinoneuntreated groups. Conclusion: The data suggest that 5-Aminoisoquinolinone can inhibit the adhesion of HT-29 cells to human umbilical vein endothelial cells. 5-Aminoisoquinolinone also can inhibit poly (adenosine 5'-diphosphate ribose) polymerase activation and the expressions of ICAM-1 and P-selectin in HT-29 cells. 5-Aminoisoquinolinone probably contributes to the prevention of tumor cell metastasis. Further study is needed.
基金Supported by the National Institutes of Health Grants,No.K99HL146954 and No.R00HL146954the College of Pharmacy Seed Research Grant Program of the University of Tennessee Health Science Center.
文摘The prevalence of metabolic dysfunction-associated steatotic liver disease(MASLD)has increased significantly in recent decades and is projected to increase further due to the rising obesity rates.MASLD patients are at higher risk of developing advanced liver diseases“cirrhosis and hepatocellular carcinoma”as well as liver-or cardiovascular-related mortality.Existing lipid-lowering therapies failed to reduce the risk of mortality in these patients.Therefore,there is an urgent need for pharmacotherapies that can control and even reverse this disease.Fanlian Huazhuo Formula(FLHZF)is a combination herbal preparation,and its various individual constituents regulate hepatic lipid metabolism,adipose tissue inflammation,and gut microbiota.Despite,these useful effects,limited information is available on its benefits in diet-induced hepatosteatosis.In this article,we discuss the research findings recently published about the therapeutic effects of FLHZF in suppressing MASLD development and underlying mechanisms.Utilizing a series of in vitro and in vivo experiments,the authors demonstrated for the first time that FLHZF suppresses MASLD in male mice possibly by inhibiting hepatic de novo lipogenesis pathways and reducing hepatocyte death.This study paves the way for future investigations aimed at investigating FLHZF’s role in inhibiting lipogenesis particularly using radioactively-labeled glucose and acetate,and governing hepatocyte mitochondrial function,gut microbiome profile,and its effects in other models of MASLD,and female mice.
基金Supported by the National Natural Science Foundation of China(No.20775061)
文摘Specific oligonucleotides such as telomere DNA and aptamer often undergo conformational changes upon ligand binding. Composite reagent composed of o-phthalaldehyde and β-mercaptoethanol(OPAME) has been extensively applied to fluorescent detection of amino compounds based on the reaction of primary amino-group, herein we proposed a general spectrofluorometry for ions and small molecules due to conformational changes upon ligand binding taking K^+ and ATP as examples. In a borate controlled buffer medium, telomere DNA could react with OPAME, giving a thio-subtituted isoindole compound with strong fluorescence emission at 455 nm when excited at 340 nm. It was found that however, the fluorescence emission was greatly reduced in the presence of K^+ since the formation of the quadruplex structure inhibits the reaction activity of amino-groups of telomere DNA. In order to testify the general application of OPAME reagent based on the conformational change of oligonucleotides, we further proposed a sensitive method of ATP based on its highly selective interaction with ATP-aptamer. The above mentioned applications show that the spectrofluorometry with the aid of OPAME reagent is simple, label free that is expected to be potentially general for DNA conformational change-based target detection.
基金the National Natural Science Foundation of China.
文摘In this paper, the increase of cellular cAMP and cGMP levels in macrophages induced bypppA2'p5'A2'p5'A (briefly 2'-5'P_3A_3) is first reported. The optimal concentration of 2'-5'P_3A_3 for the elevation of cellular cGMP to the highest level is 10^(-7)-10^(-6)mol/L, while thatfor cAMP is 10^(-7)mol/L. The time for cGMP to reach its peak value is 15 min and that forcAMP is 2 h, when the cells are treated with 2'-5' P_3A_3 at 10^(-7)mol/L, which is the optimalconcentration for developing biological effect of macrophages (phagocytosis). These resultssuggest that cGMP and cAMP may be related to, or may be the mediators for, 2'-5'P_3A_3action.
基金supported by the National Natural Science Foundation of China(Nos.22076146,92043302).
文摘The air-liquid interface(ALI)culture is a kind of recently developed system,which has proved its availability in simulating the biology of respiratory tract epithelial tissues.In this study,an ALI-based mouse primary olfactory epithelial cell(OEC)model was established to perform the exposure of PM_(2.5)(PM=particulate matter)collected from Dianshan Lake(Shanghai)and Wangdu(Hebei).The results showed that PM_(2.5)in both regions caused a decrease in cell viability in a dose-dependent manner.The 0.5 and 5µg/cm^(2)(around ambient concentrations)of PM_(2.5)disrupted OEC membrane integrity and produced oxidative stress with elevated indicators of malondialdehyde(MDA)and reactive oxygen species(ROS).In transcriptomic sequencing,the terms concerning inflammatory cytokines and second messenger cyclic adenosine-3′,5′-monophoshate(cAMP)were enriched in two treatments.The cytokine array showed the levels of some cytokines were altered,although inflammatory responses may not remarkably occur.Meanwhile,PM_(2.5)disturbed cAMP contents and key genes in the cAMP signaling pathway.The effects of PM_(2.5)of both regions were largely consistent,while Wangdu samples caused more ROS and Dianshan Lake samples tended to induce inflammatory injury.Thus,with the application of a novel ALI-based in vitro OEC model,our study demonstrated that ambient PM_(2.5)has the ability to threaten the physiologies and functions of the olfactory system.
文摘It has been suggested that the energy required for sperm motility is produced by oxidative phosphorylation while glycolysis seems to be an important source for ATP transmission along the flagellum. Some studies have investigated the chemical and kinetic properties of the enzyme glyceraldehyde 3-phosphate dehydrogenase to identify any changes in the regulation of glycolysis and sperm motility. In contrast, there are few studies analyzing the genetic basis of hypokinesis. For this reason, we investigated the glyceraldehyde 3-phosphate dehydrogenase gene in human sperm to evaluate whether asthenozoospermia was correlated with any changes in its expression. Semen examination and glyceraldehyde 3-phosphate dehydrogenase gene expression studies were carried out on 116 semen samples divided into two groups - Group A consisted of 58 normokinetic samples and Group B of 58 hypokinetic samples. Total RNA was extracted from spermatozoa, and real-time PCR quantification of mRNA was carried out using specific primers and probes. The expression profiles for the Groups A and B were very similar. The mean delta Ct was as follows - Group A, 5.79 + 1.04; Group B, 5.47 + 1.27. Our study shows that in human sperm, there is no difference in glyceraldehyde 3-phosphate dehydrogenase gene expression between samples with impaired motility and samples with normal kinetics. We believe that this study could help in the understanding of the molecular mechanisms of sperm kinetics, suggesting that hypomotility may be due to a possible posttranscriptional impairment of the control mechanism, such as mRNA splicing, or to posttranslational changes.
基金Project supported by the National Natural Science Foundation of China (No. 90210027).Acknowledgments The authors especially thank Zhide Hu in Lanzhou University for kindly allowing the use of the RF-5301PC spectrofluorophotometer (Shimadzu) in this work and Wenying He in Lanzhou University for active discussion as well as zealous help during the fluorescence experiments.
文摘In this paper, some new results on the selective weak interaction between Na-4-tosyl-L-arginine methyl ester hydrochloride (TAME) and adenosine-5'-triphosphate (ATP) have been reported. Fluorescence spectrophotometry and Fourier transform infrared (FT-IR) spectroscopy were used to investigate this kind of weak interaction. In fluorescence experiments, obvious fluorescence quenching phenomena were observed when TAME was added, which indicated the weak interactions between TAME and ATP. It has been identified by fluorescence titration experiments that TAME exhibited high selectivity to ATP over ADP and AMP. FT-IR spectral results showed that an ATP-TAME adduct was formed. The experimental results indicated that the interaction sites were the guanidinium group of TAME main-chain and the γ-phosphate group of ATP, and the interaction took place through hydrogen bonding and electrostatic force. In addition, the effects of metal ions on the weak interaction between ATP and TAME, or between ATP and analogues of L-arginine were studied.