Adhesive forces exist between soil and the surfaces of soil-engaging components; they increase working resistance and energy consumption. This paper tries to find an approach to reduce the adhesion and resistance of b...Adhesive forces exist between soil and the surfaces of soil-engaging components; they increase working resistance and energy consumption. This paper tries to find an approach to reduce the adhesion and resistance of bulldozing plate. A simplified mechanical model of adhesion and resistance between soil and a non-smooth bulldozing plate is proposed. The interaction force between moist soil and a non-smooth bulldozing plate is analyzed. The pressure and friction distribution on the bulldozing plate are computed, and the anti-adhesive effect of a corrugated bulldozing plate is simulated numerically. Numerical results show that the wavy bulldozing plate achieves an effective drag reduction in moist soil. The optimal wavy shape of the corrugated bulldozing plate with the minimal resistance is designed. The basic principle of reducing soil adhesion of the non-smooth surface is discovered.展开更多
Nanoparticle-reinforced metal matrix composite coatings have significant potential in mechanical part surface strengthening owing their excellent mechanical properties.This paper reports a phenomenon in which the grai...Nanoparticle-reinforced metal matrix composite coatings have significant potential in mechanical part surface strengthening owing their excellent mechanical properties.This paper reports a phenomenon in which the grain orientation gradually evolves to(220)as the deposition current density increases when preparing nanoparticle-reinforced nickel-based composite coatings through jet electrodeposition(JED).During the preparation of the Ni-SiC composite coatings,the deposition current density increased from 180 A/dm2 to 220 A/dm2,and TC(220)gradually increase from 41.4%to 97.7%.With an increase of TC(220),the self-corrosion potential increases from−0.575 to−0.477 V,the corrosion current density decreases from 9.52μA/cm^2 to 2.76μA/cm^2,the diameter of the corrosion pits that after 10 days of immersion in a 3.5 wt%NaCl solution decreases from 278–944 nm to 153–260 nm,and the adhesion of the coating increases from 24.9 N to 61.6 N.Compared a conventional electrodeposition(CED),the Ni-SiC composite coating using JED has the advantages of a smooth surface morphology,high corrosion resistance,and strong adhesion,which are more obvious with an increase in TC(220).展开更多
To further improve the performance of binders,a SiHfBCN-based high-temperature resistant adhesive was successfully synthesized by Polymer-Derived Ceramics(PDC)route using TiB2,Polysiloxane(PSO)and short SiC nanowires ...To further improve the performance of binders,a SiHfBCN-based high-temperature resistant adhesive was successfully synthesized by Polymer-Derived Ceramics(PDC)route using TiB2,Polysiloxane(PSO)and short SiC nanowires as fillers.The effect of short SiC nanowires on the adhesive strength at room temperature and high temperature,as well as the reinforcing mechanism was studied.Compared with the adhesive without SiC nanowires,after curing(at 170℃)and pyrolysis(at 1000℃)in air,the appropriate adding of SiC nanowires upgrades the room temperature and high temperature(at 1000℃ in air)adhesive strength to(12.50±0.67)MPa(up by about 32%)and(13.11±0.79)MPa(up by about 106%),respectively.Attractively,under the synergistic impact of the nanowire bridging,nanowire breaking,nanowire drawing and crack deflection,the optimized adhesive exhibits multi-stage fracture,causing the increscent fracture displacement.展开更多
文摘Adhesive forces exist between soil and the surfaces of soil-engaging components; they increase working resistance and energy consumption. This paper tries to find an approach to reduce the adhesion and resistance of bulldozing plate. A simplified mechanical model of adhesion and resistance between soil and a non-smooth bulldozing plate is proposed. The interaction force between moist soil and a non-smooth bulldozing plate is analyzed. The pressure and friction distribution on the bulldozing plate are computed, and the anti-adhesive effect of a corrugated bulldozing plate is simulated numerically. Numerical results show that the wavy bulldozing plate achieves an effective drag reduction in moist soil. The optimal wavy shape of the corrugated bulldozing plate with the minimal resistance is designed. The basic principle of reducing soil adhesion of the non-smooth surface is discovered.
基金Supported by National Natural Science Foundation of China(Grant No.51675535)Major Research Project of Shandong Province of China(Grant No.2019GGX104068)+3 种基金Key Pre-Research Foundation of Military Equipment of China(Grant No.6140923030702)National Science and Technology Major Project of China(Grant No.2017ZX05072)Graduate Innovation Protect of China University of Petroleum(East China)(Grant No.YCX2020059)Science and Technology Support Plan for Youth Innovation of Universities in Shandong Province of China(Grant No.2019KJB016).
文摘Nanoparticle-reinforced metal matrix composite coatings have significant potential in mechanical part surface strengthening owing their excellent mechanical properties.This paper reports a phenomenon in which the grain orientation gradually evolves to(220)as the deposition current density increases when preparing nanoparticle-reinforced nickel-based composite coatings through jet electrodeposition(JED).During the preparation of the Ni-SiC composite coatings,the deposition current density increased from 180 A/dm2 to 220 A/dm2,and TC(220)gradually increase from 41.4%to 97.7%.With an increase of TC(220),the self-corrosion potential increases from−0.575 to−0.477 V,the corrosion current density decreases from 9.52μA/cm^2 to 2.76μA/cm^2,the diameter of the corrosion pits that after 10 days of immersion in a 3.5 wt%NaCl solution decreases from 278–944 nm to 153–260 nm,and the adhesion of the coating increases from 24.9 N to 61.6 N.Compared a conventional electrodeposition(CED),the Ni-SiC composite coating using JED has the advantages of a smooth surface morphology,high corrosion resistance,and strong adhesion,which are more obvious with an increase in TC(220).
基金co-supported by the National Natural Science Foundation of China (No. 52061135102)the Innovation Training Foundation for College Students of Northwestern Polytechnical University, China (No. 202310699180)the Creative Research Foundation of the Science and Technology on Thermostructural Composite Materials Laboratory
文摘To further improve the performance of binders,a SiHfBCN-based high-temperature resistant adhesive was successfully synthesized by Polymer-Derived Ceramics(PDC)route using TiB2,Polysiloxane(PSO)and short SiC nanowires as fillers.The effect of short SiC nanowires on the adhesive strength at room temperature and high temperature,as well as the reinforcing mechanism was studied.Compared with the adhesive without SiC nanowires,after curing(at 170℃)and pyrolysis(at 1000℃)in air,the appropriate adding of SiC nanowires upgrades the room temperature and high temperature(at 1000℃ in air)adhesive strength to(12.50±0.67)MPa(up by about 32%)and(13.11±0.79)MPa(up by about 106%),respectively.Attractively,under the synergistic impact of the nanowire bridging,nanowire breaking,nanowire drawing and crack deflection,the optimized adhesive exhibits multi-stage fracture,causing the increscent fracture displacement.