期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
PREPARATION, CHARACTERIZATION AND ADHESIVE PROPERTIES OF DI-AND TRI-HYDROXY BENZOYL CHITOSAN NANOPARTICLES
1
作者 Mohamad Taghi Taghizadeh Ali Bahadori 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2013年第4期649-659,共11页
Modified chitosans with 3,4-di-hydroxy benzoyl groups (CS-DHBA) and 3,4,5-tri-hydroxy benzoyl groups (CS- THBA) were synthesized and their nanoparticles were prepared via ionic crosslinking by tripolyphosphate (... Modified chitosans with 3,4-di-hydroxy benzoyl groups (CS-DHBA) and 3,4,5-tri-hydroxy benzoyl groups (CS- THBA) were synthesized and their nanoparticles were prepared via ionic crosslinking by tripolyphosphate (TPP). The chemical structure and degree of substitution (DS) of di- and tri-hydroxy benzoyl chitosans are determined by FTIR and IH- NMR spectroscopy. The morphology of particles, size distribution and zeta potential of nanoparticles were studied using transmission electron microscopy (TEM) and dynamic light scattering (DLS), respectively. The mean diameters of particles of CS-DHBA and CS-THBA nanoparticles were 144 nm and 112 nm, respectively. It was found that the particles size decreased slightly with decreasing the degree of substitution and increasing degree of deacetylation (DD), due to increasing of ionic crosslinking of ammonium ions and polyanions of tripolyphosphate. The TEM photographs of CS-DHBA show that these particles are spherical in shape, but the particles of CS-THBA show some aggregation. In addition, the solubility and the mechanical properties of the prepared modified chitosans and their nanoparticles were evaluated for bio-adhesive and biomedical application. The results of solubility tests indicated that, the CS-DHBA and CS-THBA have higher solubility at pH 〉 7 comparing to CS. Also the CS-DHBA, CS-THBA and their nanoparticles showed a significant adhesive capacity and enhanced tensile strength and tensile modulus. 展开更多
关键词 Nanoparticles Di- and tri-hydroxy benzoyl chitosans Ionic cross linking SOLUBILITY adhesive properties.
原文传递
Study on ASTM Shear-loaded Adhesive Lap Joints 被引量:5
2
作者 关志东 吴爱国 王进 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2004年第2期79-86,共8页
Finite element analyses and experiments are conducted to analyze the mechanical behavior of ASTM shear-loaded adhesive lap joints. Adhesive is characterized for the stress-strain relation by comparing the apparent she... Finite element analyses and experiments are conducted to analyze the mechanical behavior of ASTM shear-loaded adhesive lap joints. Adhesive is characterized for the stress-strain relation by comparing the apparent shear-strain relations obtained from finite element analysis and experiments following ASTM D 5656 Standard. With the established stress-strain relation, two failure criteria using equivalent plastic strain and J-integral are adopted to predict the failure loads for joint specimens following ASTM D 5656 and ASTM D 3165 Standard, respectively. Good correlation is found between the finite element results and the experimental results. The strength of ASTM D 3165 specimens with debonding defects is also studied. Calculation results shows that experiment data following the standards provide only relative material constants, such as apparent shear modulus and strengths. Further investigation is required to find out the engineering properties needed for actual joint design. For the specimens with debonding defects, the locations of defects have great effects on their load bearing ability. 展开更多
关键词 adhesive-bonded joint engineering property of adhesive strength of adhesive bond-bonded joint debonding defect
下载PDF
Influence of Backbone Structure on Properties of Directly Polymerized Phenoxy Resins from Epichlorohydrin and Various Aromatic Dihydric Phenols Monomers 被引量:1
3
作者 CAI Hong-li BI Da-wu SHAO Ke ZHONG Shuang-ling NA Hui 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2007年第5期607-612,共6页
A series of phenoxy resins was directly prepared through the polymerization of each of the various aromatic dihydric phenols and epichlorohydrin.FTIR and 1H NMR spectra were recorded to characterize the structures of ... A series of phenoxy resins was directly prepared through the polymerization of each of the various aromatic dihydric phenols and epichlorohydrin.FTIR and 1H NMR spectra were recorded to characterize the structures of the re-sins.The GPC curves were used to determine the molecular weight distribution.In addition,the thermal properties of the resins were studied with differential scanning calorimetry(DSC)and thermal gravimetric analysis(TGA).The thermal stabilities of the polymers increased with the content of the benzene ring,pendant group increasing or biphenyl groups emerging.The adhesive properties of the polymers were evaluated in terms of the lap shear strength with Fe-Fe adherends.The fracture mechanisms were determined by SEM observation and it was found that there was an important participation of cohesive fracture mechanisms.Also,it has been demonstrated that the extension of these micro-cohesive mechanisms is directly correlated with the adhesive strength.According to these results,the phenoxy resin containing biphenyl groups presented a higher adhesive strength and could improve the adhesive property of the epoxy/phenoxy system to a certain extent. 展开更多
关键词 Phenoxy resin Thermal property adhesive property
下载PDF
Enhancing surface adhesion of polytetrafluoroethylene induced by two-step in-situ treatment with radiofrequency capacitively coupled Ar/Ar+CH_(4)+NH_(3) plasma
4
作者 卢曼婷 何弈 +4 位作者 刘学 黄嘉敏 张佳伟 马晓萍 辛煜 《Plasma Science and Technology》 SCIE EI CAS CSCD 2023年第10期97-104,共8页
Although some progress in plasma modification of the polytetrafluoroethylene(PTFE) surface has been made recently,its adhesion strength still needs to be further improved.In this work,the surface of a PTFE sample was ... Although some progress in plasma modification of the polytetrafluoroethylene(PTFE) surface has been made recently,its adhesion strength still needs to be further improved.In this work,the surface of a PTFE sample was treated with a two-step in-situ method.Firstly,the PTFE surface was treated with capacitively coupled Ar plasma to improve its mechanical interlocking performance;then,Ar+NH_(3)+CH_(4) plasma was used to deposit an a-CNx:H cross-linking layer on the PTFE surface to improve the molecular bonding ability.After treatment,a high specific surface area of 2.20 and a low F/C ratio of 0.32 were achieved on the PTFE surface.Its surface free energy was increased significantly and its maximum adhesion strength reached77.1 N·10 mm^(-1),which is 56% higher than that of the single-step Ar plasma-treated sample and32% higher than that of the single-step Ar+CH_(4)+NH_(3) plasma-treated sample. 展开更多
关键词 adhesion property surface modification capacitively coupled plasma polytetrafluoroethylene(Some figures may appear in colour only in the online journal)
下载PDF
Advances in studies of the tribological behavior of molecular deposition films 被引量:1
5
作者 Xiao Yuqi Zhang Siwei +1 位作者 Wang Deguo Gao Manglai 《Petroleum Science》 SCIE CAS CSCD 2008年第4期379-387,共9页
An overview of the advances in studies on tribology of molecular deposition (MD) films is presented here to summarize the studies of nanofrictional properties, adhesion, wear and mechanical behavior, as well as the ... An overview of the advances in studies on tribology of molecular deposition (MD) films is presented here to summarize the studies of nanofrictional properties, adhesion, wear and mechanical behavior, as well as the molecular dynamics simulation of nanotribological properties of the film in the last decade. Some key research topics which need to be investigate further are addressed. 展开更多
关键词 Molecular deposition (MD) film tribological behavior adhesive property wear characteristics mechanical behavior
下载PDF
Simulation of the effect of hydrate adhesion properties on flow safety in solid fluidization exploitation
6
作者 Jun'ao Wang Yan Li +3 位作者 Jiafei Zhao Bohui Shi Jing Gong Qingping Li 《Petroleum》 EI CSCD 2023年第3期403-411,共9页
During the solid fluidization exploitation of marine natural gas hydrates,the hydrate particles and cuttings produced via excavation and crushing are transported by the drilling mud.The potential flow safety issues ar... During the solid fluidization exploitation of marine natural gas hydrates,the hydrate particles and cuttings produced via excavation and crushing are transported by the drilling mud.The potential flow safety issues arising during the transport process,such as the blockage of pipelines and equipment,have attracted considerable attention.This study aims to investigate the impact of hydrate adhesion features,including agglomeration,cohesion,and deposition,on the flow transport processes in solid fluidization exploitation and to provide a reference for the design and application of multiphase hydrate slurry transport in solid fluidization exploitation.We established a numerical simulation model that considers the hydrate adhesion properties using the coupled computational fluid dynamics and discrete element method(CFD-DEM)for the multiphase mixed transport in solid fluidization exploitation.An appropriate model to simulate the adhesion force of the hydrate particles and the corresponding parameter values were obtained.The conclusions obtained are as follows.Under the same operating conditions,a stationary bed is more likely to form in the transport process due to the hydrate adhesion forces;adhesion forces can increase the critical deposition velocity of the mixture of hydrate particles and cuttings.Hydrate adhesion lowers the height of the solid-phase moving bed,while the agglomeration and cohesion of particles can intensify the aggregation and deposition of hydrate debris and cuttings at the bottom of the pipe.These particles tend to form a deposit bed rather than a moving bed,which reduces the effective flow area of the pipeline and increases the risk of blockage. 展开更多
关键词 Solid fluidization exploitation Critical flow velocity Height of the moving bed Adhesion properties CFD-DEM
原文传递
PPC-based Reactive Hot Melt Polyurethane Adhesive(RHMPA)--Efficient Glues for Multiple Types of Substrates 被引量:7
7
作者 Zeng-He Liu Ji-Qing Huang +6 位作者 Li-Jie Sun Dong Lei Jing Cao Shuo Chen Wen-Chang Shih Feng-Ling Qing Zheng-Wei You 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2018年第1期58-64,共7页
Tens of billion metric tons of anthropogenic CO_2 discharged from the burning of fossil fuels lead to an enormous environmental and resource burden. It is charming to transform CO_2 to desirable, economical chemicals ... Tens of billion metric tons of anthropogenic CO_2 discharged from the burning of fossil fuels lead to an enormous environmental and resource burden. It is charming to transform CO_2 to desirable, economical chemicals and materials. Poly(propylene carbonate)(PPC) is an emerging CO_2-based material. Herein, we report the design, synthesis and characterization of the reactive hot melt polyurethane adhesive(RHMPA) based on PPC polyol. The resultant RHMPAs exhibit good adhesion properties to multiple substrates including plastics(PC, PMMA, ABS) and metals(aluminium, steel), which is comparable to or even better than conventional RHMPAs prepared from petro-based polyol. Furthermore, the PPC-based RHMPAs have tunable mechanical properties, and are thermally stable in the typical working range of bonding process(up to 270 °C). The study is expected to expand the applications of PPC and provide a new type of CO_2-based renewable and eco-friendly materials. 展开更多
关键词 CO_2-based poly(propylene carbonate) Reactive hot melt polyurethane adhesive Sustainable adhesive Adhesion property
原文传递
Interface adhesion properties characterization of sulfide electrode materials by the combination of BOLS and XPS
8
作者 DONG GuiXiu WANG Yan +2 位作者 JIANG WenJuan ZOU YouLan MA ZengSheng 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2022年第8期1798-1807,共10页
Although sulfide electrode materials in lithium battery systems have been intensively investigated due to their low-cost, high theoretical specific capacity, and energy density, there are few studies fousing on the ad... Although sulfide electrode materials in lithium battery systems have been intensively investigated due to their low-cost, high theoretical specific capacity, and energy density, there are few studies fousing on the adhesion properties, including the physical origin of hetero-coordination resolved interface relaxation, binding energy and the energetic behavior, and even the accurate quantitative information. In this paper, we present an approach for quantifying the interface adhesion properties of sulfide electrode materials resolved by the combination of bond order-length-strength theory(BOLS) and X-ray photoelectron spectroscopy(XPS), which has enabled clarification of the interface adhesion nature. The results show that the Cu 2p, Fe 2p, and S 2p electrons of Cu S and FeS_(2) compounds shift negatively due to the charge polarization of the conduction electrons of the heteroatoms, while Mo 3d, Sn 3d electrons of Mo S2 and Sn S2 and the C 1 s and S 2p electrons of CS compound shift positively due to the quantum trapping. It is noted that the exact interface adhesion energies of Cu S is 3.42 J m^(-2), which is consistent with the calculation result. The approach can not only clarify the origin of the interface adhesion properties of sulfide electrode materials,but also derive their quantification information from atomistic sites. 展开更多
关键词 SULFIDE interfacial adhesion properties atomic cohesive energies bond order-length-strength theory X-ray photoelectron spectroscopy
原文传递
Multifunctional hydrogels for chronic wounds repairing
9
作者 Xiao Wang Rong Hu +1 位作者 Lu Han Xiong Lu 《Biosurface and Biotribology》 EI 2023年第4期85-100,共16页
Because of their tissue-like mechanical performances,high biocompatibility,and adjust-able functionality,hydrogels have become increasingly attractive materials for promoting wound healing.Chronic wounds include burn,... Because of their tissue-like mechanical performances,high biocompatibility,and adjust-able functionality,hydrogels have become increasingly attractive materials for promoting wound healing.Chronic wounds include burn,diabetic,and infected wounds.Unlike common incision wounds,chronic wounds are more challenging to heal.To meet the clinical needs,multifunctional hydrogels should be fabricated and investigated.To guide future studies on the fabrication of hydrogel-based chronic wound dressings,a review of advanced multifunctional hydrogels is necessary.Various hydrogels with advanced properties,such as antibacterial,antioxidant,bioadhesive,anti-inflammatory,and wound healing properties,that can be used for skin burn wounds and diabetic wounds are summarised.Lastly,the prospects of advanced hydrogels for wound healing are elaborated. 展开更多
关键词 adhesive property ANTIBACTERIAL BIOMATERIALS biomedical application FUNCTIONALISATION wound healing
原文传递
A review on tribology of polymer composite coatings 被引量:14
10
作者 Yilong REN Lin ZHANG +6 位作者 Guoxin XIE Zhanbo LI Hao CHEN Hanjun GONG Wenhu XU Dan GUO Jianbin LUO 《Friction》 SCIE EI CAS CSCD 2021年第3期429-470,共42页
Self-lubricating polymer composite coatings,with tailorable tribological and mechanical properties,have been widely employed on mechanical parts to reduce friction and wear,which saves energy and improves the overall ... Self-lubricating polymer composite coatings,with tailorable tribological and mechanical properties,have been widely employed on mechanical parts to reduce friction and wear,which saves energy and improves the overall performance for applications such as aerospace satellite parts,shafts,gears,and bushings.The addition of functional fillers can overcome the limitations of single-polymer coatings and extend the service life of the coatings by providing a combination of low friction,high wear resistance,high load bearing,high temperature resistance,and high adhesion.This paper compares the heat resistance,and the tribological and mechanical properties of common polymer matrices,as well as the categories of functional fillers that improve the coating performance.Applicable scopes,process parameters,advantages,and limitations of the preparation methods of polymer coatings are discussed in detail.The tribological properties of the composite coatings with different matrices and fillers are compared,and the lubrication mechanisms are analyzed.Fillers reduce friction by promoting the formation of transfer films or liquid shear films.Improvement of the mechanical properties of the composite coatings with fillers of different morphologies is described in terms of strengthening and toughening mechanisms,including a stress transfer mechanism,shear yielding,crack bridging,and interfacial debonding.The test and enhancement methods for the adhesion properties between the coating and substrate are discussed.The coating adhesion can be enhanced through mechanical treatment,chemical treatment,and energy treatment of the substrate.Finally,we propose the design strategies for high-performance polymer composite coating systems adapted to specific operating conditions,and the limitations of current polymer composite coating research are identified. 展开更多
关键词 polymer coatings tribological properties mechanical properties adhesion properties coating design
原文传递
Environmental Concern of Using Coal Tar in Road Engineering and Its Possible Alternatives 被引量:1
11
作者 XIAO Y VAN DE VEN M F C +1 位作者 MOLENAAR A A A WU S P 《武汉理工大学学报》 CAS CSCD 北大核心 2010年第17期1-7,17,共8页
Coal tar,a by-product from the destructive distillation of coal in coking oven,is widely used in road engineering for its excellent adhesion and fuel resistance properties,especially for pavement surface treatments in... Coal tar,a by-product from the destructive distillation of coal in coking oven,is widely used in road engineering for its excellent adhesion and fuel resistance properties,especially for pavement surface treatments in gas stations and airports. However,coal tar has a high Polycyclic Aromatic Hydrocarbons (or PAHs) content,which makes it toxic. In 1985,the International Agency for Research on Cancer (IARC) has proved that coal tar is carcinogenic to humans. Research showed that Coal Tar-based Sealers (CTS) contribute to the majority of PAHs pollution in the water environment.Because of this environmental concern,CTS are not allowed in many developed countries in the USA and Europe. In contrast,coal tar is still used for road engineering in China and is even used increasingly.This paper gives a literature review on the general information and research about environmental concern of using coal tar in road engineering. Based on the review,some possible alternatives to replace coal tar are described. These alternatives include nano-clay/epoxy modified bitumen/bitumen emulsion and waterborne polyurethane/epoxy resin,which are environmental friendly. They have the potential to perform as well as CTS,and even better in some special applications. 展开更多
关键词 coal tar pavement surface treatment adhesion property polycyclic aromatic hydrocarbons modified bitumen emulsion
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部