By using a static and high-speed material testing machine, tensile deformation behaviors of two kinds of Si- Mn TRIP (transformation induced plasticity) steels and DP (dual phase) steel were studied in a large ran...By using a static and high-speed material testing machine, tensile deformation behaviors of two kinds of Si- Mn TRIP (transformation induced plasticity) steels and DP (dual phase) steel were studied in a large range of strain rates (0.001-2000 s 1). Temperature variation during adiabatic heating and the amount of retained austenite at fracture were measured by an infrared thermometer and an Xray stress analyser, respectively. The microstructure of steels was observed by optical microscopy (OM) and scanning electron microscopy (SEM) before and after tensile test. It was found from the experimental results that the tensile strength of these steels increased, and the fracture elonga- tion firstly decreased and subsequently increased, as the strain rate increased in the range "of 0.1 - 2000 s -1. The temperature raised during adiabatic heating of TRIP steel was in the range of 100- 300℃, while that of the DP steel was in the range of 100-220℃ . The temperature rise of these steels increased with increasing the strain rate, as well as the amount of the transformed retained austenite in TRIP steels. It was confirmed that austenite to martensite transformation is not suppressed by adiabatic heating.展开更多
Cu46Zr46A14.8Ti3.2 bulk metallic glass (BMG) was successfully synthesized by copper-mold casting and the mechanical properties at room temperature were measured by compression tests. The structure and thermal charac...Cu46Zr46A14.8Ti3.2 bulk metallic glass (BMG) was successfully synthesized by copper-mold casting and the mechanical properties at room temperature were measured by compression tests. The structure and thermal characteristics were analyzed by XRD and DSC, and the fracture surface morphology was examined by SEM. The glassy alloy with 4 mm in diameter shows an high fracture strength of 1 960 MPa, with an improvement of about 20% compared to the ultimate compression fracture strength of the Cu46Zr46A18 BMG, which suggests that the Ti addition improves the compression fracture strength. The different degrees of the adiabatic heating induce four types of fracture features: a vein-like structure, an elongated and striated vein pattern, melting and smooth regions. The elongated and striated vein patterns as well as the melting region show that enormous strain energy is released, which causes significant adiabatic heating. Furthernaore, many micro-cracks observed in the smooth region are caused by the strong shear force. In addition, the strong shear force leads to many shear bands as well as the melting in the lateral surface.展开更多
Due to the deterioration of serious energy dilemma,energy-conservation and emission–reduction have been the strategic target in the past decades,thus people have identified the vital importance of higher energy effic...Due to the deterioration of serious energy dilemma,energy-conservation and emission–reduction have been the strategic target in the past decades,thus people have identified the vital importance of higher energy efficiency and the influence of lower carbon development.Since work exchange network is a significant part of energy recovery system,its optima design will have dramatically significant effect on energy consumption reduction in chemical process system.With an extension of the developed transshipment model in isothermal process,a novel step-wise methodology for synthesis of direct work exchange network(WEN)in adiabatic process involving heat integration is first proposed in this paper,where a nonlinear programming(NLP)model is formulated by regarding the minimum utility consumption as objective function and optimizing the initial WEN in accordance with the presented matching rules to get the optimized WEN configuration at first.Furthermore,we focus on the work exchange network synthesis with heat integration to attain the minimal total annual cost(TAC)with the introduction of heat-exchange equipment that is achieved by the following strategies in sequence:introducing heat-exchange equipment directly,adjusting the work quantity of the adjacent utility compressors or expanders,and approximating upper/lower pressure limits consequently to obtain considerable cost savings of expanders or compressors and work utility.Finally,a case taken from the literature is studied to illustrate the feasibility and effectiveness of the proposed method.展开更多
Hot compression tests were carried out with specimens of 20Cr-24Ni-6Mo super-austenitic stainless steel at strain rate from 0.01 to 10 s^-1 in the temperature range from 950 to 1150 ℃,and flow behavior was analyzed.M...Hot compression tests were carried out with specimens of 20Cr-24Ni-6Mo super-austenitic stainless steel at strain rate from 0.01 to 10 s^-1 in the temperature range from 950 to 1150 ℃,and flow behavior was analyzed.Microstructure analysis indicated that dynamic recrystallization(DRX)behavior was more sensitive to the temperature than strain rate,and full DRX was obtained when the specimen deformed at 1150℃.When the temperature reduced to 1050 ℃,full DRX was completed at the highest strain rate 10 s-l rather than at the lowest strain rate 0.01 s-1 because the adiabatic heating was pronounced at higher strain rate.In addition,flow behavior reflected in flow curves was inconsistent with the actual microstructural evolution during hot deformation,especially at higher strain rates and lower temperatures.Therefore,flow curves were revised in consideration of the effects of adiabatic heating and friction during hot deformation.The results showed that adiabatic heating became greater with the increase of strain level,strain rate and the decrease of temperature,while the frictional effect cannot be neglected at high strain level.Moreover,based on the revised flow curves,strain-dependent constitutive modeling was developed and verified by comparing the predicted data with the experimental data and the modified data.The result suggested that the developed constitutive modeling can more adequately predict the flow behavior reflected by corrected flow curves than that reflected by experimental flow curves,even though some difference existed at 950℃ and 0.01 s^-1.The main reason was that plenty of precipitates generated at this deformation condition and affected the DRX behavior and deformation behavior,eventually resulted in dramatic increase of deformation resistance.展开更多
基金Sponsored by National Natural Science Foundation of China(50934011,50971137)National Basic Research Program of China(2010CB630802)
文摘By using a static and high-speed material testing machine, tensile deformation behaviors of two kinds of Si- Mn TRIP (transformation induced plasticity) steels and DP (dual phase) steel were studied in a large range of strain rates (0.001-2000 s 1). Temperature variation during adiabatic heating and the amount of retained austenite at fracture were measured by an infrared thermometer and an Xray stress analyser, respectively. The microstructure of steels was observed by optical microscopy (OM) and scanning electron microscopy (SEM) before and after tensile test. It was found from the experimental results that the tensile strength of these steels increased, and the fracture elonga- tion firstly decreased and subsequently increased, as the strain rate increased in the range "of 0.1 - 2000 s -1. The temperature raised during adiabatic heating of TRIP steel was in the range of 100- 300℃, while that of the DP steel was in the range of 100-220℃ . The temperature rise of these steels increased with increasing the strain rate, as well as the amount of the transformed retained austenite in TRIP steels. It was confirmed that austenite to martensite transformation is not suppressed by adiabatic heating.
基金Project(NCET-10-0360) supported by the Program for New Century Excellent Talents in University,ChinaProject supported by the Fundamental Research Funds for the Central Universities,China
文摘Cu46Zr46A14.8Ti3.2 bulk metallic glass (BMG) was successfully synthesized by copper-mold casting and the mechanical properties at room temperature were measured by compression tests. The structure and thermal characteristics were analyzed by XRD and DSC, and the fracture surface morphology was examined by SEM. The glassy alloy with 4 mm in diameter shows an high fracture strength of 1 960 MPa, with an improvement of about 20% compared to the ultimate compression fracture strength of the Cu46Zr46A18 BMG, which suggests that the Ti addition improves the compression fracture strength. The different degrees of the adiabatic heating induce four types of fracture features: a vein-like structure, an elongated and striated vein pattern, melting and smooth regions. The elongated and striated vein patterns as well as the melting region show that enormous strain energy is released, which causes significant adiabatic heating. Furthernaore, many micro-cracks observed in the smooth region are caused by the strong shear force. In addition, the strong shear force leads to many shear bands as well as the melting in the lateral surface.
基金Supported by the National Natural Science Foundation of China(21576036,21406026)
文摘Due to the deterioration of serious energy dilemma,energy-conservation and emission–reduction have been the strategic target in the past decades,thus people have identified the vital importance of higher energy efficiency and the influence of lower carbon development.Since work exchange network is a significant part of energy recovery system,its optima design will have dramatically significant effect on energy consumption reduction in chemical process system.With an extension of the developed transshipment model in isothermal process,a novel step-wise methodology for synthesis of direct work exchange network(WEN)in adiabatic process involving heat integration is first proposed in this paper,where a nonlinear programming(NLP)model is formulated by regarding the minimum utility consumption as objective function and optimizing the initial WEN in accordance with the presented matching rules to get the optimized WEN configuration at first.Furthermore,we focus on the work exchange network synthesis with heat integration to attain the minimal total annual cost(TAC)with the introduction of heat-exchange equipment that is achieved by the following strategies in sequence:introducing heat-exchange equipment directly,adjusting the work quantity of the adjacent utility compressors or expanders,and approximating upper/lower pressure limits consequently to obtain considerable cost savings of expanders or compressors and work utility.Finally,a case taken from the literature is studied to illustrate the feasibility and effectiveness of the proposed method.
基金supported financially by the National Natural Science Foundation of China(No.U1460204)
文摘Hot compression tests were carried out with specimens of 20Cr-24Ni-6Mo super-austenitic stainless steel at strain rate from 0.01 to 10 s^-1 in the temperature range from 950 to 1150 ℃,and flow behavior was analyzed.Microstructure analysis indicated that dynamic recrystallization(DRX)behavior was more sensitive to the temperature than strain rate,and full DRX was obtained when the specimen deformed at 1150℃.When the temperature reduced to 1050 ℃,full DRX was completed at the highest strain rate 10 s-l rather than at the lowest strain rate 0.01 s-1 because the adiabatic heating was pronounced at higher strain rate.In addition,flow behavior reflected in flow curves was inconsistent with the actual microstructural evolution during hot deformation,especially at higher strain rates and lower temperatures.Therefore,flow curves were revised in consideration of the effects of adiabatic heating and friction during hot deformation.The results showed that adiabatic heating became greater with the increase of strain level,strain rate and the decrease of temperature,while the frictional effect cannot be neglected at high strain level.Moreover,based on the revised flow curves,strain-dependent constitutive modeling was developed and verified by comparing the predicted data with the experimental data and the modified data.The result suggested that the developed constitutive modeling can more adequately predict the flow behavior reflected by corrected flow curves than that reflected by experimental flow curves,even though some difference existed at 950℃ and 0.01 s^-1.The main reason was that plenty of precipitates generated at this deformation condition and affected the DRX behavior and deformation behavior,eventually resulted in dramatic increase of deformation resistance.