期刊文献+
共找到318篇文章
< 1 2 16 >
每页显示 20 50 100
Dynamic Mechanical Behavior and Adiabatic Shear Bands of Ultrafine Grained Pure Zirconium 被引量:3
1
作者 刘晓燕 YANG Cheng +3 位作者 YANG Xirong LUO Lei HE Xiaomei KANG Shumei 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2020年第1期200-207,共8页
Dynamic compression tests were carried out to investigate dynamic mechanical behavior and adiabatic shear bands in ultrafine grained(UFG)pure zirconium prepared by equal channel angular pressing(ECAP)and rotary swayin... Dynamic compression tests were carried out to investigate dynamic mechanical behavior and adiabatic shear bands in ultrafine grained(UFG)pure zirconium prepared by equal channel angular pressing(ECAP)and rotary swaying.The cylindrical specimens were deformed dynamically on the split Hopkinson pressure bar(SHPB)at different strain rates of 800 to 4000s^-1 at room temperature.The temperature distribution of the shear bands was estimated on the basis of temperature rise of uniform plastic deformation stage and thermal diffusion effect.The results show that the true stress-true strain curves of UFG pure zirconium are concave upward trend of strain in range of 0.02-0.16 due to the effects of strain hardening,strain rate hardening and thermal softening.The formation of the adiabatic shear bands is the main reason of UFG pure zirconium failure.A large number of micro-voids are observed in the adiabatic shear bands,and the macroscopic cracks develop from the micro-voids coalescence.The fracture surface of UFG pure zirconium exhibits quasi cleavage fracture with the characteristic features of shear dimples and river pattern.The highest temperature within the shear bands of UFG pure zirconium is about 592 K. 展开更多
关键词 ULTRAFINE grained PURE ZIRCONIUM dynamic compression adiabatic SHEAR bandS thermal diffusion
下载PDF
Adiabatic Shear Bands in 30CrNi_3MoV Structural Steel Induced during High Speed Cutting 被引量:3
2
作者 Chunzheng DUAN and Minjie WANGKey Laboratory of Ministry of Education for Precision and Non-traditional Machining, School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2004年第6期775-778,共4页
The width and spacing of adiabatic shear bands (ASBs) in the serrated chips generated during high speed orthogonal cutting of 30CrNi3MoV structurai steel were measured by opticai microscopy (OM), the temperature rise ... The width and spacing of adiabatic shear bands (ASBs) in the serrated chips generated during high speed orthogonal cutting of 30CrNi3MoV structurai steel were measured by opticai microscopy (OM), the temperature rise in the shear band was estimated. The microstructures of the ASBs were also characterized by SEM and TEM. The results show that the width and spacing of ASBs decrease with the increase of the cutting speed. The further observations show that the microstructure between the matrix and the center of the ASB gradually changes, and that the martensitic phase transformation, carbide precipitation and recrystallization may occur in the ASB. 展开更多
关键词 adiabatic shear band (ASB) RECRYSTALLIZATION Orthogonal cutting
下载PDF
Formation of adiabatic shearing band for high-strength Ti-5553 alloy:A dramatic thermoplastic microstructural evolution 被引量:3
3
作者 Dong-yang Qin Ying-gang Miao Yu-long Li 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第11期2045-2051,共7页
By using split Hopkinson pressure bar, optical microscopy and electronic microscopy, we investigate the influence of initial microstructures on the adiabatic shear behavior of high-strength Ti-5Al-5V-5Mo-3Cr(Ti-5553) ... By using split Hopkinson pressure bar, optical microscopy and electronic microscopy, we investigate the influence of initial microstructures on the adiabatic shear behavior of high-strength Ti-5Al-5V-5Mo-3Cr(Ti-5553) alloy with lamellar microstructure and bimodal microstructure. Lamellar alloy tends to form adiabatic shearing band(ASB) at low compression strain, while bimodal alloy is considerably ASBresistant. Comparing with the initial microstructure of Ti-5553 alloy, we find that the microstructure of the ASB changes dramatically. Adiabatic shear of lamellar Ti-5553 alloy not only results in the formation of recrystallized β nano-grains within the ASB, but also leads to the chemical redistribution of the alloying elements such as Al, V, Cr and Mo. As a result, the alloying elements distribute evenly in the ASB.In contrast, the dramatic adiabatic shear of bimodal alloy might give rise to the complete lamination of the globular primary a grain and the equiaxial prior β grain, which is accompanied by the dynamic recrystallization of a lamellae and β lamellae. As a result, ASB of bimodal alloy is composed of a/β nanomultilayers. Chemical redistribution does not occur in ASB of bimodal alloy. Bimodal Ti-5553 alloy should be a promising candidate for high performance armors with high mass efficiency due to the processes high dynamic flow stress and excellent ASB-resistance. 展开更多
关键词 Titanium alloys ARMOR High loading rate adiabatic shearing band Dynamic phase transformation
下载PDF
Temperature distribution in adiabatic shear band for ductile metal based on JOHNSON-COOK and gradient plasticity models 被引量:12
4
作者 王学滨 《中国有色金属学会会刊:英文版》 EI CSCD 2006年第2期333-338,共6页
Gradient-dependent plasticity considering interactions and interplay among microstructures was included into JOHNSON-COOK model to calculate the temperature distribution in adiabatic shear band(ASB), the peak and aver... Gradient-dependent plasticity considering interactions and interplay among microstructures was included into JOHNSON-COOK model to calculate the temperature distribution in adiabatic shear band(ASB), the peak and average temperatures as well as their evolutions. The differential local plastic shear strain was derived to calculate the differential local plastic work and the temperature rise due to the microstructural effect. The total temperature in ASB is the sum of initial temperature, temperature rise at strain-hardening stage and non-uniform temperature due to the microstructural effect beyond the peak shear stress. The flow shear stress—average plastic shear strain curve, the temperature distribution, the peak and average temperatures in ASB are computed for Ti-6Al-4V. When the imposed shear strain is less than 2 and the shear strain rate is 1 000 s?1, the dynamic recovery and recrystalliza-tion processes occur. However, without the microstructural effect, the processes might have not occurred since heat diffusion decreases the temperature in ASB. The calculated maximum temperature approaches 1 500 K so that phase transformation might take place. The present predictions support the previously experimental results showing that the transformed and deformed ASBs are observed in Ti-6Al-4V. Higher shear strain rate enhances the possibility of dynamic recrystallization and phase transformation. 展开更多
关键词 TI-6AL-4V 钛合金 绝热带 塑性 JOHNSON-COOK模型 动态再结晶 相变
下载PDF
Calculation of temperature distribution in adiabatic shear band based on gradient-dependent plasticity 被引量:8
5
作者 王学滨 《中国有色金属学会会刊:英文版》 CSCD 2004年第6期1062-1067,共6页
A method for calculation of temperature distribution in adiabatic shear band is proposed in terms of gradient-dependent plasticity where the characteristic length describes the interactions and interplaying among micr... A method for calculation of temperature distribution in adiabatic shear band is proposed in terms of gradient-dependent plasticity where the characteristic length describes the interactions and interplaying among microstructures. First, the increment of the plastic shear strain distribution in adiabatic shear band is obtained based on gradient-dependent plasticity. Then, the plastic work distribution is derived according to the current flow shear stress and the obtained increment of plastic shear strain distribution. In the light of the well-known assumption that 90% of plastic work is converted into the heat resulting in increase in temperature in adiabatic shear band, the increment of the temperature distribution is presented. Next, the average temperature increment in the shear band is calculated to compute the change in flow shear stress due to the thermal softening effect. After the actual flow shear stress considering the thermal softening effect is obtained according to the Johnson-Cook constitutive relation, the increment of the plastic shear strain distribution, the plastic work and the temperature in the next time step are recalculated until the total time is consumed. Summing the temperature distribution leads to rise in the total temperature distribution. The present calculated maximum temperature in adiabatic shear band in titanium agrees with the experimental observations. Moreover, the temperature profiles for different flow shear stresses are qualitatively consistent with experimental and numerical results. Effects of some related parameters on the temperature distribution are also predicted. 展开更多
关键词 温度分布 绝热剪切带 应力定位 金相学 计算方法
下载PDF
Microstructure evolution mechanism in adiabatic shear band in TA2 被引量:2
6
作者 杨扬 熊俊 杨续跃 《中国有色金属学会会刊:英文版》 CSCD 2004年第4期670-674,共5页
The micro structure evolution mechanism in adiabatic shear band in commercial pure titanium (TA2) at high strain rates(γ≈105 - 106/s) were studied. The nanosized recrystallized grains (about 50 nm in diameter) withi... The micro structure evolution mechanism in adiabatic shear band in commercial pure titanium (TA2) at high strain rates(γ≈105 - 106/s) were studied. The nanosized recrystallized grains (about 50 nm in diameter) within the center of adiabatic shear band (ASB) were observed by means of transmission electronic microscope (TEM). A Rotational Dynamic Recrystallization (RDR) mechanism can explain the microstructure evolution (i. e. nanosized grains were formed within 5 - 10μs) in ASB. Kinetics calculations indicate that the recrystallized small grains are formed during the deformation and don't undergo significant growth by grain boundary migration after deformation. 展开更多
关键词 钛合金 绝热剪切带 显微结构 TEM 再结晶
下载PDF
A method for calculating damage evolution in adiabatic shear band of titanium alloy 被引量:3
7
作者 王学滨 《中国有色金属学会会刊:英文版》 EI CSCD 2009年第5期1280-1285,共6页
A method for calculating the evolution of the local damage variable at the adiabatic shear band(ASB)center was proposed.In the present method,the JOHNSON-COOK model and the nonlocal theory were adopted,and the damage ... A method for calculating the evolution of the local damage variable at the adiabatic shear band(ASB)center was proposed.In the present method,the JOHNSON-COOK model and the nonlocal theory were adopted,and the damage variable formula applicable for the bilinear(linearly elastic and strain-softening)constitutive relation was further generalized to consider the plastic deformation occurring in the strain-hardening stage.Aiming at Ti-6Al-4V,the effect of strain rate on the evolution of the local damage variable at the ASB center was investigated.In addition,a parametric study was carried out,including the effects of strain-hardening exponent,strain rate sensitive coefficient,thermal-softening exponent,static shear strength,strain-hardening modulus,shear elastic modulus,work to heat conversion factor,melting temperature and initial temperature.The damage extent at the ASB center in the radial collapse experiment was assessed.It is found that at higher strain rates the damage in the ASB becomes more serious at the same average plastic shear strain of the ASB. 展开更多
关键词 绝热剪切带 损伤变量 钛铝合金 演化方法 计算 应变速率敏感系数 应变软化 硬化指数
下载PDF
Quantitative calculation of local shear deformation in adiabatic shear band for Ti-6Al-4V 被引量:4
8
作者 王学滨 《中国有色金属学会会刊:英文版》 EI CSCD 2007年第4期698-704,共7页
JOHNSON-COOK(J-C) model was used to calculate flow shear stress—shear strain curve for Ti-6Al-4V in dynamic torsion test. The predicted curve was compared with experimental result. Gradient-dependent plasticity(GDP) ... JOHNSON-COOK(J-C) model was used to calculate flow shear stress—shear strain curve for Ti-6Al-4V in dynamic torsion test. The predicted curve was compared with experimental result. Gradient-dependent plasticity(GDP) was introduced into J-C model and GDP was involved in the measured flow shear stress—shear strain curve, respectively, to calculate the distribution of local total shear deformation(LTSD) in adiabatic shear band(ASB). The predicted LTSDs at different flow shear stresses were compared with experimental measurements. J-C model can well predict the flow shear stress—shear strain curve in strain-hardening stage and in strain-softening stage where flow shear stress slowly decreases. Beyond the occurrence of ASB, with a decrease of flow shear stress, the increase of local plastic shear deformation in ASB is faster than the decrease of elastic shear deformation, leading to more and more apparent shear localization. According to the measured flow shear stress—shear strain curve and GDP, the calculated LTSDs in ASB are lower than experimental results. At earlier stage of ASB, though J-C model overestimates the flow shear stress at the same shear strain, the model can reasonably assess the LTSDs in ASB. According to the measured flow shear stress—shear strain curve and GDP, the calculated local plastic shear strains in ASB agree with experimental results except for the vicinity of shear fracture surface. In the strain-softening stage where flow shear stress sharply decreases, J-C model cannot be used. When flow shear stress decreases to a certain value, shear fracture takes place so that GDP cannot be used. 展开更多
关键词 绝热剪切带 钛铝钒合金 剪切定位 JOHNSON-COOK模型 剪切应变 剪应力
下载PDF
Adiabatic shear banding of hot-extruded tungsten heavy alloy under cryogenic temperature
9
作者 Liu, Jinxu Yang, Jia +2 位作者 Zhou, Jingyi Li, Shukui Guo, Wenqi 《Rare Metals》 SCIE EI CAS CSCD 2012年第1期17-21,共5页
The effect of cryogenic temperature on adiabatic shear banding (ASBing) of tungsten heavy alloy (WHA) processed by hot-hydrostatic ex-trusion was investigated.Results show that,when the initial temperature is decrease... The effect of cryogenic temperature on adiabatic shear banding (ASBing) of tungsten heavy alloy (WHA) processed by hot-hydrostatic ex-trusion was investigated.Results show that,when the initial temperature is decreased,the dynamic flow stress,the critical failure time,and the dynamic failure energy of specimens show an increasing tendency,while the susceptibility to ASB of WHA shows a decreasing tendency,which is characterized by decreased shear strain and increased width of shear bands.Microstructure analysis shows that the number of mi-crocracks within ASB exhibits an increasing tendency with decreased initial temperature,and the dynamic recrystallization (DRX) process within ASB is evidently suppressed at the lower temperature.As a result of the lower temperature,the motion and rearrangement of disloca-tion are effectively suppressed,which is mainly responsible for the incomplete DRX process within ASB and decreases susceptibility to ASB. 展开更多
关键词 adiabatic shear bands dynamic behaviors tungsten heavy alloys microstructure evolution dynamic recrystallization
下载PDF
Phenomenon of transformed adiabatic shear band surrounded by deformed adiabatic shear band of ductile metal
10
作者 王学滨 《中国有色金属学会会刊:英文版》 EI CSCD 2008年第5期1177-1183,共7页
The coexistent phenomenon of deformed and transformed adiabatic shear bands(ASBs) of ductile metal was analyzed using the JOHNSON-COOK model and gradient-dependent plasticity(GDP).The effects of melting point,density,... The coexistent phenomenon of deformed and transformed adiabatic shear bands(ASBs) of ductile metal was analyzed using the JOHNSON-COOK model and gradient-dependent plasticity(GDP).The effects of melting point,density,heat capacity and work to heat conversion factor were investigated.Higher work to heat conversion factor,lower density,lower heat capacity and higher melting point lead to wider transformed ASB and higher local plastic shear deformation between deformed and transformed ASBs.Higher work to heat conversion factor,lower density,lower heat capacity and lower melting point cause higher local plastic shear deformation in the deformed ASB.Three reasons for the scatter in experimental data on the ASB width were pointed out and the advantages of the work were discussed.If the transformed ASB width is used to back-calculate the internal length parameter in the GDP,undoubtedly,the parameter will be extremely underestimated. 展开更多
关键词 隔热剪切带 韧性金属 变形度 JOHNSON-COOK模式 可塑性
下载PDF
Adiabatic shear sensitivity of ductile metal based on gradient-dependent JOHNSON-COOK model
11
作者 王学滨 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第6期1355-1361,共7页
Based on the expression proposed by WANG for the local plastic shear deformation distribution in the adiabatic shear band(ASB) using gradient-dependent plasticity,the effects of 10 parameters on the adiabatic shear ... Based on the expression proposed by WANG for the local plastic shear deformation distribution in the adiabatic shear band(ASB) using gradient-dependent plasticity,the effects of 10 parameters on the adiabatic shear sensitivity were studied.The experimental data for a flow line in the ASB obtained by LIAO and DUFFY were fitted by use of the curve-fitting least squares method and the proposed expression.The critical plastic shear strains corresponding to the onset of the ASB for Ti-6Al-4V were assessed at different assigned ASB widths.It is found that the proposed expression describes well the non-linear deformation characteristics of the flow line in the ASB.Some parameters in the JOHNSON-COOK model are back-calculated using different critical plastic shear strains.The adiabatic shear sensitivity decreases as initial static yield stress,work to heat conversion factor and strain-rate parameter decrease,which is opposite to the effects of density,heat capacity,ambient temperature and strain-hardening exponent.The present model can predict the ASB width evolution process.The predicted ASB width decreases with straining until a stable value is reached.The famous model proposed by DODD and BAI only can predict a final stable value. 展开更多
关键词 adiabatic shear band TI-6AL-4V JOHNSON-COOK model WIDTH gradient-dependent plasticity theory local plastic shear deformation distribution
下载PDF
Effects of constitutive parameters on adiabatic shear localization for ductile metal based on JOHNSON-COOK and gradient plasticity models 被引量:5
12
作者 王学滨 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2006年第6期1362-1369,共8页
By using the widely used JOHNSON-COOK model and the gradient-dependent plasticity to consider microstructural effect beyond the occurrence of shear strain localization,the distributions of local plastic shear strain a... By using the widely used JOHNSON-COOK model and the gradient-dependent plasticity to consider microstructural effect beyond the occurrence of shear strain localization,the distributions of local plastic shear strain and deformation in adiabatic shear band(ASB)were analyzed.The peak local plastic shear strain is proportional to the average plastic shear strain,while it is inversely proportional to the critical plastic shear strain corresponding to the peak flow shear stress.The relative plastic shear deformation between the top and base of ASB depends on the thickness of ASB and the average plastic shear strain.A parametric study was carried out to study the influence of constitutive parameters on shear strain localization.Higher values of static shear strength and work to heat conversion factor lead to lower critical plastic shear strain so that the shear localization is more apparent at the same average plastic shear strain.Higher values of strain-hardening exponent,strain rate sensitive coefficient,melting point,thermal capacity and mass density result in higher critical plastic shear strain,leading to less apparent shear localization at the same average plastic shear strain.The strain rate sensitive coefficient has a minor influence on the critical plastic shear strain,the distributions of local plastic shear strain and deformation in ASB.The effect of strain-hardening modulus on the critical plastic shear strain is not monotonous.When the maximum critical plastic shear strain is reached,the least apparent shear localization occurs. 展开更多
关键词 adiabatic SHEAR band DUCTILE METAL SHEAR LOCALIZATION JOHNSON-COOK model CONSTITUTIVE PARAMETERS
下载PDF
Adiabatic shear localization evolution for steel based on the Johnson-Cook model and gradient-dependent plasticity 被引量:3
13
作者 Xuebin Wang 《Journal of University of Science and Technology Beijing》 CSCD 2006年第4期313-318,共6页
Gradient-dependent plasticity is introduced into the phenomenological Johnson-Cook model to study the effects of strainhardening, strain rate sensitivity, thermal-softening, and microstructure. The microstructural eff... Gradient-dependent plasticity is introduced into the phenomenological Johnson-Cook model to study the effects of strainhardening, strain rate sensitivity, thermal-softening, and microstructure. The microstructural effect (interactions and interplay among microstructures) due to heterogeneity of texture plays an important role in the process of development or evolution of an adiabatic shear band with a certain thickness depending on the grain diameter. The distributed plastic shear strain and deformation in the shear band are derived and depend on the critical plastic shear strain corresponding to the peak flow shear stress, the coordinate or position, the internal length parameter, and the average plastic shear strain or the flow shear stress. The critical plastic shear strain, the distributed plastic shear strain, and deformation in the shear band are numerically predicted for a kind of steel deformed at a constant shear strain rate. Beyond the peak shear stress, the local plastic shear strain in the shear band is highly nonuniform and the local plastic shear deformation in the band is highly nonlinear. Shear localization is more apparent with the increase of the average plastic shear strain. The calculated distributions of the local plastic shear strain and deformation agree with the previous numerical and experimental results. 展开更多
关键词 adiabatic shear band STEEL STRAIN-HARDENING gradient-dependent plasticity Johnson-Cook model
下载PDF
Adiabatic Shear Localization for Steels Based on Johnson-Cook Model and Second-and Fourth-Order Gradient Plasticity Models 被引量:2
14
作者 WANG Xue-bin 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2007年第5期56-61,共6页
To consider the effects of the interactions and interplay among microstructures, gradient-dependent models of second- and fourth-order are included in the widely used phenomenological Johnson-Cook model where the effe... To consider the effects of the interactions and interplay among microstructures, gradient-dependent models of second- and fourth-order are included in the widely used phenomenological Johnson-Cook model where the effects of strain-hardening, strain rate sensitivity, and thermal-softening are successfully described. The various parameters for 1006 steel, 4340 steel and S-7 tool steel are assigned. The distributions and evolutions of the local plastic shear strain and deformation in adiabatic shear band (ASB) are predicted. The calculated results of the second- and fourth- order gradient plasticity models are compared. S-7 tool steel possesses the steepest profile of local plastic shear strain in ASB, whereas 1006 steel has the least profile. The peak local plastic shear strain in ASB for S-7 tool steel is slightly higher than that for 4340 steel and is higher than that for 1006 steel. The extent of the nonlinear distribution of the local plastic shear deformation in ASB is more apparent for the S-7 tool steel, whereas it is the least apparent for 1006 steel. In fourth-order gradient plasticity model, the profile of the local plastic shear strain in the middle of ASB has a pronounced plateau whose width decreases with increasing average plastic shear strain, leading to a shrink of the portion of linear distribution of the profile of the local plastic shear deformation. When compared with the sec- ond-order gradient plasticity model, the fourth-order gradient plasticity model shows a lower peak local plastic shear strain in ASB and a higher magnitude of plastic shear deformation at the top or base of ASB, which is due to wider ASB. The present numerical results of the second- and fourth-order gradient plasticity models are consistent with the previous numerical and experimental results at least qualitatively. 展开更多
关键词 adiabatic shear band steel gradient-dependent plasticity Johnson-Cook model second-order gradient fourth-order gradient
下载PDF
Analysis of Adiabatic Shearing Failure Mechanism for Aluminum Matrix Composites Based on Experimental and Numerical Simulation 被引量:1
15
作者 郑振兴 朱德智 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2012年第5期892-896,共5页
Adiabatic shear behavior and the corresponding mechanism of TiB2/Al composites were researched by split Hopkinson pressure bar (SHPB).Results show that the flow stresses of the TiB2/Al composites exhibit softening t... Adiabatic shear behavior and the corresponding mechanism of TiB2/Al composites were researched by split Hopkinson pressure bar (SHPB).Results show that the flow stresses of the TiB2/Al composites exhibit softening tendency with the increasing of strain rates. All the composites fail in splitting and cutting with a 45 degree, and the phase transformed bands of molten aluminum are found on the adiabatic shear layers. The deformation behavior and shear localization of the TiB2/Al composites specimens were simulated by finite element code MSC.Marc. The Johnson-Cook model was used to describe the thermo-viscoplastic response of the specimen material. There was unanimous between the numerical result and the experimental result on the location of the adiabatic shear band. From the numerical simulation and experiment, it was concluded that the instantaneous failure of the composite was ascribed due to the local low strength area where the formation of adiabatic shear band was, and the stress condition had significant effect on the initiation and propagation of adiabatic shear band (ASB). 展开更多
关键词 metal matrix composites split Hopkinson pressure bar high strain-rate adiabatic shear band Johnson-Cook model
下载PDF
高应变速率下TB6钛合金在绝热剪切带内的晶粒瞬间细化机制
16
作者 胡林岚 董向阳 +3 位作者 杜晋 刘小刚 赵倩 孙健 《工具技术》 北大核心 2024年第10期37-41,共5页
采用分离式霍普金森压杆装置对TB6钛合金帽型试样进行室温动态加载试验,通过微观组织表征技术对绝热剪切带内的微观结构特征进行观察,研究高应变速率下TB6钛合金绝热剪切带内的晶粒瞬间细化机制。TEM观察结果表明:绝热剪切带中晶粒的瞬... 采用分离式霍普金森压杆装置对TB6钛合金帽型试样进行室温动态加载试验,通过微观组织表征技术对绝热剪切带内的微观结构特征进行观察,研究高应变速率下TB6钛合金绝热剪切带内的晶粒瞬间细化机制。TEM观察结果表明:绝热剪切带中晶粒的瞬时细化是三种机制共同作用的结果。第一种机制是由于位错的快速运动、增殖以及塞积促使晶粒内部产生应力集中现象,最终在此现象的作用下形成裂纹、断裂以及细晶;第二种机制是通过增大晶粒内部的颈缩程度迫使细晶形成;在转动态再结晶机制的作用下,绝热剪切带的中心区域形成100nm的细小等轴晶。 展开更多
关键词 绝热剪切带 高应变速率 晶粒细化机制 TB6钛合金
下载PDF
预制孪晶对AZ31镁合金绝热剪切敏感性的影响
17
作者 毛萍莉 杨雨松 《沈阳工业大学学报》 CAS 北大核心 2024年第3期277-283,共7页
为了分析不同孪晶体积分数对材料绝热剪切敏感性的影响,预制具有不同孪晶体积分数的AZ31镁合金。采用分离式霍普金森压杆在200℃、944 s^(-1)条件下对AZ31镁合金帽状试样进行高速冲击试验,采用电子背散射衍射仪和光学显微镜对试样在高... 为了分析不同孪晶体积分数对材料绝热剪切敏感性的影响,预制具有不同孪晶体积分数的AZ31镁合金。采用分离式霍普金森压杆在200℃、944 s^(-1)条件下对AZ31镁合金帽状试样进行高速冲击试验,采用电子背散射衍射仪和光学显微镜对试样在高应变速率变形前后的微观组织进行观察,计算了试样发生绝热剪切时的吸收能量,比较了绝热剪切带内外的显微硬度。结果表明:不同孪晶体积分数试样内均产生了绝热剪切带,随着孪晶体积分数的增加,绝热剪切带宽度和吸收能量减小,而绝热剪切敏感性增大。 展开更多
关键词 AZ31镁合金 预制孪晶 高速冲击 帽状试样 吸收功 显微硬度 绝热剪切带 绝热剪切敏感性
下载PDF
爆炸加载TC4 ELI钛合金微损伤研究
18
作者 宋雨宸 王琳 +4 位作者 赵登辉 吴江 范丽静 张宇轩 程焕武 《兵器材料科学与工程》 CAS CSCD 北大核心 2024年第6期26-31,共6页
用TNT炸药空中爆炸加载等轴组织TC4 ELI钛合金板材,研究爆炸药量及距靶板中心距离对钛合金显微组织演化的影响,测试了爆炸加载后材料的力学性能。结果表明:爆炸加载后TC4 ELI钛合金显微组织内产生了大量形变带,形变带宽度为10~120μm;... 用TNT炸药空中爆炸加载等轴组织TC4 ELI钛合金板材,研究爆炸药量及距靶板中心距离对钛合金显微组织演化的影响,测试了爆炸加载后材料的力学性能。结果表明:爆炸加载后TC4 ELI钛合金显微组织内产生了大量形变带,形变带宽度为10~120μm;随着爆炸药量从200 g提高到300 g,形变带的数量及总宽度增加,形变带边界更加清晰;随着距靶板中心距离的增加,形变带数量不变,宽度增加。对爆炸加载回收靶板采用分离式霍普金森压杆(SHPB)进行动态压缩再加载试验,随药量和距靶板中心距离的增加,钛合金静动态抗压强度与断裂应变增加。动态再加载后产生了绝热剪切转变带,形变带对转变带的萌生及扩展过程影响较小。 展开更多
关键词 TC4 ELI钛合金 爆炸加载 再加载力学性能 绝热剪切形变带 绝热剪切转变带
下载PDF
超细晶纯钛动态力学响应及变形机制
19
作者 李帅康 刘晓燕 +2 位作者 杨西荣 罗雷 王敬忠 《塑性工程学报》 CAS CSCD 北大核心 2024年第8期155-163,共9页
采用分离式霍普金森压杆技术在应变速率为2000~3000 s^(-1)和温度为300~450℃条件下对超细晶纯钛进行了动态冲击实验,研究了其动态力学响应及变形机制,并利用扫描电子显微镜和透射电子显微镜对变形后的微观组织进行了表征。结果表明:超... 采用分离式霍普金森压杆技术在应变速率为2000~3000 s^(-1)和温度为300~450℃条件下对超细晶纯钛进行了动态冲击实验,研究了其动态力学响应及变形机制,并利用扫描电子显微镜和透射电子显微镜对变形后的微观组织进行了表征。结果表明:超细晶纯钛的真应力-真应变曲线呈现出明显的“双应力峰”特征,随着应变速率的增加和温度的降低,其屈服强度和流变应力提高,表现出正应变速率敏感性和负温度敏感性。在应变速率为2000~3000 s^(-1)的范围内,超细晶纯钛的应变速率敏感性指数m为0.12~0.17。当应变速率大于2500 s^(-1)时,超细晶纯钛试样出现绝热剪切带,绝热剪切带产生的临界应变为0.316。在动态冲击载荷下,超细晶纯钛的变形机制由低温时的位错密度增加和位错胞形成转变为高温时的几何动态再结晶和晶粒粗化。 展开更多
关键词 超细晶纯钛 动态力学行为 变形机制 组织演变 绝热剪切带
下载PDF
应变速率对TB6钛合金绝热剪切敏感性的影响
20
作者 刘小刚 郭正华 +2 位作者 郦逸凡 姜丽红 冯琛文 《矿冶工程》 CAS 北大核心 2024年第1期157-160,共4页
在室温下采用分离式霍普金森压杆对TB6钛合金帽型试样进行动态加载,研究了应变速率对TB6钛合金绝热剪切敏感性的影响。结果表明,应变速率1950~2510 s^(-1)时,4组试样均表现出明显的应变硬化效应;在绝热温升作用下,4组试样均发生热塑失... 在室温下采用分离式霍普金森压杆对TB6钛合金帽型试样进行动态加载,研究了应变速率对TB6钛合金绝热剪切敏感性的影响。结果表明,应变速率1950~2510 s^(-1)时,4组试样均表现出明显的应变硬化效应;在绝热温升作用下,4组试样均发生热塑失稳形成绝热剪切带;受冲击载荷和材料晶粒尺寸影响,基体和绝热剪切带之间的过渡区域变形梯度不明显;热剪切带内100 nm等轴晶的形成是旋转动态再结晶机制作用的结果。通过观察金相、表征绝热剪切敏感性及计算扩展能发现,TB6钛合金绝热剪切敏感性随应变速率增加而增加。 展开更多
关键词 绝热剪切敏感性 绝热剪切带 应变速率 旋转动态再结晶 TB6钛合金 分离式霍普金森压杆
下载PDF
上一页 1 2 16 下一页 到第
使用帮助 返回顶部