期刊文献+
共找到35篇文章
< 1 2 >
每页显示 20 50 100
Adiabatic Shear Bands in 30CrNi_3MoV Structural Steel Induced during High Speed Cutting 被引量:3
1
作者 Chunzheng DUAN and Minjie WANGKey Laboratory of Ministry of Education for Precision and Non-traditional Machining, School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2004年第6期775-778,共4页
The width and spacing of adiabatic shear bands (ASBs) in the serrated chips generated during high speed orthogonal cutting of 30CrNi3MoV structurai steel were measured by opticai microscopy (OM), the temperature rise ... The width and spacing of adiabatic shear bands (ASBs) in the serrated chips generated during high speed orthogonal cutting of 30CrNi3MoV structurai steel were measured by opticai microscopy (OM), the temperature rise in the shear band was estimated. The microstructures of the ASBs were also characterized by SEM and TEM. The results show that the width and spacing of ASBs decrease with the increase of the cutting speed. The further observations show that the microstructure between the matrix and the center of the ASB gradually changes, and that the martensitic phase transformation, carbide precipitation and recrystallization may occur in the ASB. 展开更多
关键词 adiabatic shear band (ASB) RECRYSTALLIZATION Orthogonal cutting
下载PDF
Adiabatic shear banding of hot-extruded tungsten heavy alloy under cryogenic temperature
2
作者 Liu, Jinxu Yang, Jia +2 位作者 Zhou, Jingyi Li, Shukui Guo, Wenqi 《Rare Metals》 SCIE EI CAS CSCD 2012年第1期17-21,共5页
The effect of cryogenic temperature on adiabatic shear banding (ASBing) of tungsten heavy alloy (WHA) processed by hot-hydrostatic ex-trusion was investigated.Results show that,when the initial temperature is decrease... The effect of cryogenic temperature on adiabatic shear banding (ASBing) of tungsten heavy alloy (WHA) processed by hot-hydrostatic ex-trusion was investigated.Results show that,when the initial temperature is decreased,the dynamic flow stress,the critical failure time,and the dynamic failure energy of specimens show an increasing tendency,while the susceptibility to ASB of WHA shows a decreasing tendency,which is characterized by decreased shear strain and increased width of shear bands.Microstructure analysis shows that the number of mi-crocracks within ASB exhibits an increasing tendency with decreased initial temperature,and the dynamic recrystallization (DRX) process within ASB is evidently suppressed at the lower temperature.As a result of the lower temperature,the motion and rearrangement of disloca-tion are effectively suppressed,which is mainly responsible for the incomplete DRX process within ASB and decreases susceptibility to ASB. 展开更多
关键词 adiabatic shear bands dynamic behaviors tungsten heavy alloys microstructure evolution dynamic recrystallization
下载PDF
A Review of Microstructural Evolution in the Adiabatic Shear Bands Induced by High Speed Machining 被引量:4
3
作者 Chunzheng DUAN Minjie WANG 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2013年第2期97-112,共16页
Investigations made by the authors and collaborators into the microstructural and fracture aspects of adiabatic shear bands (ASBs) of the hardened steels and Ti alloys induced by high speed machining (HSM) are bri... Investigations made by the authors and collaborators into the microstructural and fracture aspects of adiabatic shear bands (ASBs) of the hardened steels and Ti alloys induced by high speed machining (HSM) are briefly reviewed. The principal findings are the following: (a) the microstructure inside the ASBs varies from the band center to the normal chip material, the gradient microstructures are found; (b) the HSM can produce two types of ASBs with increasing in cutting speed, the deformed shear bands formed at lower cutting speed and the transformed shear bands formed at higher cutting speed; (c) the very small equiaxed recrystallized grains are observed in the center of the ASBs, the dynamic recrystallization and phase transformation may occur simultaneously during the formation of the transformed ASBs; (d) The dynamic rotational recrystallization is the origin of the equiaxed grains in the center of the ASBs. A microstructural evolution model in ASBs produced during HSM for the harden steel is proposed; (e) the microstructural pattern of fracture surface is characterised by the elongated dimples. A microcosmic adiabatic shear fracture model during HSM of the hardened steel is built up. 展开更多
关键词 adiabatic shear bands (ASBs) High speed machining (HSM) MICROSTRUCTURE FRACTURE
原文传递
Adiabatic shear banding of hot-rolling Ti–6Al–4V alloy subjected to dynamic shearing and uniaxial dynamic compression 被引量:4
4
作者 Yu-Meng Luo Jin-Xu Liu +3 位作者 Xing-Wang Cheng Shu-Kui Li Fu-Chi Wang Wen-Wen Guo 《Rare Metals》 SCIE EI CAS CSCD 2015年第9期632-637,共6页
Effect of stress state including dynamic shearing and uniaxial dynamic compression on adiabatic shear banding(ASBing) of hot-rolling Ti–6Al–4V(TC4) alloy was investigated. The absorbed energy of specimen before fail... Effect of stress state including dynamic shearing and uniaxial dynamic compression on adiabatic shear banding(ASBing) of hot-rolling Ti–6Al–4V(TC4) alloy was investigated. The absorbed energy of specimen before failure was calculated to evaluate the susceptibility to adiabatic shear band(ASB) of TC4 alloy quantitatively.Results show that the susceptibility to ASB of hot-rolling TC4 alloy exhibits obvious anisotropy under both dynamic shearing and uniaxial dynamic compression conditions, but the anisotropy of susceptibility to ASB under dynamic shearing condition exhibits an opposite tendency with that under uniaxial dynamic compression condition. Under the condition of uniaxial dynamic compression, material shows the highest susceptibility to ASB when loaded along transverse direction(TD) of the hot-rolling TC4, while the lowest susceptibility when loaded along rolling direction(RD). However, under the condition of dynamic shearing,the material behaves in the opposite way, demonstrating the lowest susceptibility when loaded along TD of the hotrolling TC4, while the highest susceptibility when loaded along RD. 展开更多
关键词 adiabatic shear banding Ti alloy Dynamic compressi
原文传递
Formation of adiabatic shear band and deformation mechanisms during warm compression of Ti–6Al–4V alloy 被引量:3
5
作者 Jiao Luo Lin-Feng Wang +3 位作者 Miao-Quan Li Chang-Jian Ge Xiao-Xiao Ma Yong-Ting Yang 《Rare Metals》 SCIE EI CAS CSCD 2016年第8期598-605,共8页
Adiabatic shear band (ASB) was narrow region where softening occurred and concentrated plastic defor- mation took place. In present study, the effects of height reduction and deformation temperature on ASB were inve... Adiabatic shear band (ASB) was narrow region where softening occurred and concentrated plastic defor- mation took place. In present study, the effects of height reduction and deformation temperature on ASB were investigated by means of optical microscopy (OM) and scanning electron microscopy (SEM). And the deformation mechanisms within the shear band were discussed thor- oughly with the help of transmission electron microscopy (TEM). There is a critical strain for the formation of ASB during warm compression of Ti-6AI-4V alloy. The width of ASB increases with height reduction increasing. Elon- gated alpha grains within shear band grow up with defor- mation temperature increasing. Some ultrafine grains that confirm the occurrence of dynamic recrystallization are observed within shear band during warm compression of Ti-6AI-4V alloy. 展开更多
关键词 Titanium alloy adiabatic shear band Deformation mechanisms Dynamic recrystallization
原文传递
Multi-scale crystal plasticity finite element simulations of the microstructural evolution and formation mechanism of adiabatic shear bands in dual-phase Ti20C alloy under complex dynamic loading 被引量:3
6
作者 Yu Zhou Qunbo Fan +3 位作者 Xin Liu Duoduo Wang Xinjie Zhu Kai Chen 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2020年第24期138-148,共11页
A dynamic compression test was performed on α+β dual-phase titanium alloy Ti20C using a split Hopkinson pressure bar.The formation of adiabatic shear bands generated during the compression process was studied by com... A dynamic compression test was performed on α+β dual-phase titanium alloy Ti20C using a split Hopkinson pressure bar.The formation of adiabatic shear bands generated during the compression process was studied by combining the proposed multi-scale crystal plasticity finite element method with experimental measurements.The complex local micro region load was progressively extracted from the simulation results of a macro model and applied to an established three-dimensional multi-grain microstructure model.Subsequently,the evolution histories of the grain shape,size,and orientation inside the adiabatic shear band were quantitatively simulated.The results corresponded closely to the experimental results obtained via transmission electron microscopy and precession electron diffraction.Furthermore,by calculating the grain rotation and temperature rise inside the adiabatic shear band,the microstructural softening and thermal softening effects of typical heavily-deformed α grains were successfully decoupled.The results revealed that the microstructural softening stress was triggered and then stabilized(in general)at a relatively high value.This indicated that the mechanical strength was lowered mainly by the grain orientation evolution or dynamic recrystallization occurring during early plastic deformation.Subsequently,thermal softening increased linearly and became the main softening mechanism.Noticeably,in the final stage,the thermal softening stress accounted for 78.4% of the total softening stress due to the sharp temperature increase,which inevitably leads to the stress collapse and potential failure of the alloy. 展开更多
关键词 Titanium alloy adiabatic shear band Multi-scale crystal plastic finite element method(CPFEM) Orientation evolution Softening mechanism
原文传递
Microstructural softening induced adiabatic shear banding in Ti-23Nb-0.7Ta-2Zr-O gum metal 被引量:2
7
作者 Silu Liu Y.Z.Guo +5 位作者 Z.L.Pan X.Z.Liao E.J.Lavernia Y.T.Zhu Q,M,Wei Yonghao Zhao 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2020年第19期31-39,共9页
Ti-23Nb-0.7Ta-2Zr-O gum metal(GM)is an attractive candidate material for applications that require superior mechanical properties.In our earlier investigation of the GM[1],geometrical softening and the generation of a... Ti-23Nb-0.7Ta-2Zr-O gum metal(GM)is an attractive candidate material for applications that require superior mechanical properties.In our earlier investigation of the GM[1],geometrical softening and the generation of adiabatic shear bands(ASBs)were proposed as primary reasons for the documented anisotropic impact response.In the present study,electron backscattered diffraction(EBSD)analysis reveals two different deformed microstructures,i.e.,deformed ultrafine grains(UFGs)and dynamically recrystallized UFGs,formed in the ASBs of GM samples processed by extrusion equal channel angular pressing(ECAP),respectively.Additional calculation of temperature rise during dynamic compression suggests that the above microstructure differences in the ASBs was originated from their different maximum ASB temperatures(608 K for extruded GM and 1159 K for ECAP-processed GM).Moreover,our calculation on the temperature at the onset of ASBs indicates that microstructural softening is the primary cause for the development of ASBs in both extruded GM(321 K)and ECAP-processed GM(331 K). 展开更多
关键词 Gum metal Split hopkinson bar adiabatic shear band MICROSTRUCTURES
原文传递
Size Effect on Onset and Subsequent Evolution of Adiabatic Shear Band:Theoretical and Numerical Analysis
8
作者 Jiejian Liu Tao Suo +1 位作者 Fenghua Zhou Yulong Li 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2020年第3期294-306,共13页
The adiabatic shear instability of ductile materials has attracted more and more attentions of researchers and groups,who have been sparing no effort in further understanding of the underlying mechanism since the firs... The adiabatic shear instability of ductile materials has attracted more and more attentions of researchers and groups,who have been sparing no effort in further understanding of the underlying mechanism since the first experimental depiction of adiabatic shear instability by Zener and Hollomon.As for the adiabatic shear instability,many factors account for its occurrence,including heat conduction,inertia effect,microstructure effect and so on.However,lots of experimental evidence has shown that metal materials display a strong size effect when the characteristic length scale is in the order of microns.The size effect has also been observed in the analysis of shear band in the ductile materials because the order of the bandwidth stays within the microscale range.However,a comprehensive understanding of the whole process of adiabatic shear banding(ASB),including the early onset and the subsequent evolution,is still lacking.In this work,a gradient plasticity model based on the Taylor-based nonlocal theory feasible for the linear perturbation analysis and convenient for numerical calculation is proposed to investigate the strain gradient on the onset of ASB and the coupling effect of heat conduction,inertia effect and strain gradient at the early stage,as well as on the subsequent evolution process at later stages.As for the onset of ASB,the linear perturbation method is used to consider the effect on the initial formation of ASB.After the investigation of the onset of ASB.the characteristic line method is applied to describe the subsequent nonlinear evolution process of ASB.Three stages of ASB evolution are clearly depicted during the evolution process,and the significance of size effect on the ASB nonlinear evolution process of ASB at different stages is analyzed.With the help of linear perturbation analysis and characteristic line method,a comprehensive description of the role of strain gradient in the ASB from the early onset to the end of the evolution is provided. 展开更多
关键词 adiabatic shear band Strain gradient Nonlinear evolution process Linear perturbation method Characteristic line method
原文传递
Formation of adiabatic shearing band for high-strength Ti-5553 alloy:A dramatic thermoplastic microstructural evolution 被引量:3
9
作者 Dong-yang Qin Ying-gang Miao Yu-long Li 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第11期2045-2051,共7页
By using split Hopkinson pressure bar, optical microscopy and electronic microscopy, we investigate the influence of initial microstructures on the adiabatic shear behavior of high-strength Ti-5Al-5V-5Mo-3Cr(Ti-5553) ... By using split Hopkinson pressure bar, optical microscopy and electronic microscopy, we investigate the influence of initial microstructures on the adiabatic shear behavior of high-strength Ti-5Al-5V-5Mo-3Cr(Ti-5553) alloy with lamellar microstructure and bimodal microstructure. Lamellar alloy tends to form adiabatic shearing band(ASB) at low compression strain, while bimodal alloy is considerably ASBresistant. Comparing with the initial microstructure of Ti-5553 alloy, we find that the microstructure of the ASB changes dramatically. Adiabatic shear of lamellar Ti-5553 alloy not only results in the formation of recrystallized β nano-grains within the ASB, but also leads to the chemical redistribution of the alloying elements such as Al, V, Cr and Mo. As a result, the alloying elements distribute evenly in the ASB.In contrast, the dramatic adiabatic shear of bimodal alloy might give rise to the complete lamination of the globular primary a grain and the equiaxial prior β grain, which is accompanied by the dynamic recrystallization of a lamellae and β lamellae. As a result, ASB of bimodal alloy is composed of a/β nanomultilayers. Chemical redistribution does not occur in ASB of bimodal alloy. Bimodal Ti-5553 alloy should be a promising candidate for high performance armors with high mass efficiency due to the processes high dynamic flow stress and excellent ASB-resistance. 展开更多
关键词 Titanium alloys ARMOR High loading rate adiabatic shearing band Dynamic phase transformation
下载PDF
Adiabatic shear sensitivity of ductile metal based on gradient-dependent JOHNSON-COOK model
10
作者 王学滨 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第6期1355-1361,共7页
Based on the expression proposed by WANG for the local plastic shear deformation distribution in the adiabatic shear band(ASB) using gradient-dependent plasticity,the effects of 10 parameters on the adiabatic shear ... Based on the expression proposed by WANG for the local plastic shear deformation distribution in the adiabatic shear band(ASB) using gradient-dependent plasticity,the effects of 10 parameters on the adiabatic shear sensitivity were studied.The experimental data for a flow line in the ASB obtained by LIAO and DUFFY were fitted by use of the curve-fitting least squares method and the proposed expression.The critical plastic shear strains corresponding to the onset of the ASB for Ti-6Al-4V were assessed at different assigned ASB widths.It is found that the proposed expression describes well the non-linear deformation characteristics of the flow line in the ASB.Some parameters in the JOHNSON-COOK model are back-calculated using different critical plastic shear strains.The adiabatic shear sensitivity decreases as initial static yield stress,work to heat conversion factor and strain-rate parameter decrease,which is opposite to the effects of density,heat capacity,ambient temperature and strain-hardening exponent.The present model can predict the ASB width evolution process.The predicted ASB width decreases with straining until a stable value is reached.The famous model proposed by DODD and BAI only can predict a final stable value. 展开更多
关键词 adiabatic shear band TI-6AL-4V JOHNSON-COOK model WIDTH gradient-dependent plasticity theory local plastic shear deformation distribution
下载PDF
Adiabatic shear localization evolution for steel based on the Johnson-Cook model and gradient-dependent plasticity 被引量:3
11
作者 Xuebin Wang 《Journal of University of Science and Technology Beijing》 CSCD 2006年第4期313-318,共6页
Gradient-dependent plasticity is introduced into the phenomenological Johnson-Cook model to study the effects of strainhardening, strain rate sensitivity, thermal-softening, and microstructure. The microstructural eff... Gradient-dependent plasticity is introduced into the phenomenological Johnson-Cook model to study the effects of strainhardening, strain rate sensitivity, thermal-softening, and microstructure. The microstructural effect (interactions and interplay among microstructures) due to heterogeneity of texture plays an important role in the process of development or evolution of an adiabatic shear band with a certain thickness depending on the grain diameter. The distributed plastic shear strain and deformation in the shear band are derived and depend on the critical plastic shear strain corresponding to the peak flow shear stress, the coordinate or position, the internal length parameter, and the average plastic shear strain or the flow shear stress. The critical plastic shear strain, the distributed plastic shear strain, and deformation in the shear band are numerically predicted for a kind of steel deformed at a constant shear strain rate. Beyond the peak shear stress, the local plastic shear strain in the shear band is highly nonuniform and the local plastic shear deformation in the band is highly nonlinear. Shear localization is more apparent with the increase of the average plastic shear strain. The calculated distributions of the local plastic shear strain and deformation agree with the previous numerical and experimental results. 展开更多
关键词 adiabatic shear band STEEL STRAIN-HARDENING gradient-dependent plasticity Johnson-Cook model
下载PDF
Adiabatic Shear Localization for Steels Based on Johnson-Cook Model and Second-and Fourth-Order Gradient Plasticity Models 被引量:2
12
作者 WANG Xue-bin 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2007年第5期56-61,共6页
To consider the effects of the interactions and interplay among microstructures, gradient-dependent models of second- and fourth-order are included in the widely used phenomenological Johnson-Cook model where the effe... To consider the effects of the interactions and interplay among microstructures, gradient-dependent models of second- and fourth-order are included in the widely used phenomenological Johnson-Cook model where the effects of strain-hardening, strain rate sensitivity, and thermal-softening are successfully described. The various parameters for 1006 steel, 4340 steel and S-7 tool steel are assigned. The distributions and evolutions of the local plastic shear strain and deformation in adiabatic shear band (ASB) are predicted. The calculated results of the second- and fourth- order gradient plasticity models are compared. S-7 tool steel possesses the steepest profile of local plastic shear strain in ASB, whereas 1006 steel has the least profile. The peak local plastic shear strain in ASB for S-7 tool steel is slightly higher than that for 4340 steel and is higher than that for 1006 steel. The extent of the nonlinear distribution of the local plastic shear deformation in ASB is more apparent for the S-7 tool steel, whereas it is the least apparent for 1006 steel. In fourth-order gradient plasticity model, the profile of the local plastic shear strain in the middle of ASB has a pronounced plateau whose width decreases with increasing average plastic shear strain, leading to a shrink of the portion of linear distribution of the profile of the local plastic shear deformation. When compared with the sec- ond-order gradient plasticity model, the fourth-order gradient plasticity model shows a lower peak local plastic shear strain in ASB and a higher magnitude of plastic shear deformation at the top or base of ASB, which is due to wider ASB. The present numerical results of the second- and fourth-order gradient plasticity models are consistent with the previous numerical and experimental results at least qualitatively. 展开更多
关键词 adiabatic shear band steel gradient-dependent plasticity Johnson-Cook model second-order gradient fourth-order gradient
下载PDF
Analysis of Adiabatic Shearing Failure Mechanism for Aluminum Matrix Composites Based on Experimental and Numerical Simulation 被引量:1
13
作者 郑振兴 朱德智 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2012年第5期892-896,共5页
Adiabatic shear behavior and the corresponding mechanism of TiB2/Al composites were researched by split Hopkinson pressure bar (SHPB).Results show that the flow stresses of the TiB2/Al composites exhibit softening t... Adiabatic shear behavior and the corresponding mechanism of TiB2/Al composites were researched by split Hopkinson pressure bar (SHPB).Results show that the flow stresses of the TiB2/Al composites exhibit softening tendency with the increasing of strain rates. All the composites fail in splitting and cutting with a 45 degree, and the phase transformed bands of molten aluminum are found on the adiabatic shear layers. The deformation behavior and shear localization of the TiB2/Al composites specimens were simulated by finite element code MSC.Marc. The Johnson-Cook model was used to describe the thermo-viscoplastic response of the specimen material. There was unanimous between the numerical result and the experimental result on the location of the adiabatic shear band. From the numerical simulation and experiment, it was concluded that the instantaneous failure of the composite was ascribed due to the local low strength area where the formation of adiabatic shear band was, and the stress condition had significant effect on the initiation and propagation of adiabatic shear band (ASB). 展开更多
关键词 metal matrix composites split Hopkinson pressure bar high strain-rate adiabatic shear band Johnson-Cook model
下载PDF
Microstructural Characterization of the Shear Bands in Fe-Cr-Ni Single Crystal by EBSD
14
作者 Huajie YANG J.H.Zhang +1 位作者 Yongbo XU Marc Andre' Meyers 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2008年第6期819-828,共10页
An investigation has been made into the microstructural characterization of the shear bands generated under high-strain rate (≈10^4 s^-1) deformation in Fe-15%Cr-15%Ni single crystal by EBSD-SEM (electron backscat... An investigation has been made into the microstructural characterization of the shear bands generated under high-strain rate (≈10^4 s^-1) deformation in Fe-15%Cr-15%Ni single crystal by EBSD-SEM (electron backscatter diffraction-scanning electron microscopy), TEM (transmission electron in microscopy) and HREM (high- resolution electron microscopy). The results reveal that the propagation of the shear band exhibits an asymmetrical behavior arising from inhomogenous distribution in plasticity in the bands because of different resistance to the collapse in different crystallographic directions; The γ-ε-α′phase transformations may take place inside and outside the bands, and these martensitic phases currently nucleate at intersections either between the twins and deformation bands or between the twins and ε-sheet. Investigation by EBSD shows that recrystallization can occur in the bands with a grain size of an average of 0.2μm in diameter. These nano-grains are proposed to attribute to the results of either dynamic or static recrystallization, which can be described by the rotational recrystallization mechanism. Calculation and analysis indicate that the strain rate inside the shear band can reach 2.50×10^6 s^-1, which is higher, by two or three orders of magnitude, than that exerted dynamically on the specimen tested. 展开更多
关键词 High-strain rate deformation adiabatic shear band Electron backscatter diffraction (EBSD) RECRYSTALLIZATION Fe-Cr-Ni single crystal
下载PDF
The Anti-Penetration Performance and Mechanism of Metal Materials:A Review
15
作者 Jialin Chen Shutao Li +5 位作者 Shang Ma Yeqing Chen Yin Liu Quanwei Tian Xiting Zhong Jiaxing Song 《Engineering》 SCIE EI CAS CSCD 2024年第9期131-157,共27页
This article reviews the anti-penetration principles and strengthening mechanisms of metal materials,ranging from macroscopic failure modes to microscopic structural characteristics,and further summarizes the micro-ma... This article reviews the anti-penetration principles and strengthening mechanisms of metal materials,ranging from macroscopic failure modes to microscopic structural characteristics,and further summarizes the micro-macro correlation in the anti-penetration process.Finally,it outlines the constitutive models and numerical simulation studies utilized in the field of impact and penetration.From the macro perspective,nine frequent penetration failure modes of metal materials are summarized,with a focus on the analysis of the cratering,compression shear,penetration,and plugging stages of the penetration process.The reasons for the formation of adiabatic shear bands(ASBs)in metal materials with different crystal structures are elaborated,and the formation mechanism of the equiaxed grains in the ASB is explored.Both the strength and the toughness of metal materials are related to the materials’crystal structures and microstructures.The toughness is mainly influenced by the deformation mechanism,while the strength is explained by the strengthening mechanism.Therefore,the mechanical properties of metal materials depend on their microstructures,which are subject to the manufacturing process and material composition.Regarding numerical simulation,the advantages and disadvantages of different constitutive models and simulation methods are summarized based on the application characteristics of metal materials in high-speed penetration practice.In summary,this article provides a systematic overview of the macroscopic and microscopic characteristics of metal materials,along with their mechanisms and correlation during the anti-penetration and impact-resistance processes,thereby making an important contribution to the scientific understanding of anti-penetration performance and its optimization in metal materials. 展开更多
关键词 Metal materials Failure model adiabatic shear band Strengthening mechanisms Numerical simulation
下载PDF
Shear localization behavior in hat-shaped specimen of near-αTi−6Al−2Zr−1Mo−1V titanium alloy loaded at high strain rate 被引量:4
16
作者 Yu-xuan DU Xin-liang YANG +6 位作者 Zu-shu LI Fang HAO You-chuan MAO Shao-qiang LI Xiang-hong LIU Yong FENG Zhi-ming YAN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第6期1641-1655,共15页
The microstructure characteristics in early stage shear localization of near-αTi−6Al−2Zr−1Mo−1V titanium alloy were investigated by split Hopkinson pressure bar(SHPB)tests using hat-shaped specimens.The microstructur... The microstructure characteristics in early stage shear localization of near-αTi−6Al−2Zr−1Mo−1V titanium alloy were investigated by split Hopkinson pressure bar(SHPB)tests using hat-shaped specimens.The microstructural evolution and deformation mechanisms of hat-shaped specimens were revealed by electron backscattered diffraction(EBSD)method.It is found that the nucleation and expansion of adiabatic shear band(ASB)are affected by both geometric and structural factors.The increase of dislocation density,structure fragment and temperature rise in the deformation-affected regions provide basic microstructural conditions.In addition to the dislocation slips,the extension twins detected in shear region also play a critical role in microstructural fragmentation due to twin-boundaries effect.Interestingly,the sandwich structure imposes a crucial influence on ASB,which finally becomes a mature wide ASB in the dynamic deformation.However,due to much larger width,the sandwich structure in the middle of shear region is also possible to serve as favorable nucleation sites for crack initiation. 展开更多
关键词 Ti−6Al−2Zr−1Mo−1V alloy adiabatic shear band split Hopkinson pressure bar hat-shaped specimen sandwich structure
下载PDF
Failure mode change and material damage with varied machining speeds:a review 被引量:2
17
作者 Jianqiu Zhang Binbin He Bi Zhang 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第2期36-60,共25页
High-speed machining(HSM) has been studied for several decades and has potential application in various industries, including the automobile and aerospace industries. However,the underlying mechanisms of HSM have not ... High-speed machining(HSM) has been studied for several decades and has potential application in various industries, including the automobile and aerospace industries. However,the underlying mechanisms of HSM have not been formally reviewed thus far. This article focuses on the solid mechanics framework of adiabatic shear band(ASB) onset and material metallurgical microstructural evolutions in HSM. The ASB onset is described using partial differential systems. Several factors in HSM were considered in the systems, and the ASB onset conditions were obtained by solving these systems or applying the perturbation method to the systems. With increasing machining speed, an ASB can be depressed and further eliminated by shock pressure. The damage observed in HSM exhibits common features. Equiaxed fine grains produced by dynamic recrystallization widely cause damage to ductile materials, and amorphization is the common microstructural evolution in brittle materials. Based on previous studies, potential mechanisms for the phenomena in HSM are proposed. These include the thickness variation of the white layer of ductile materials. These proposed mechanisms would be beneficial to deeply understanding the various phenomena in HSM. 展开更多
关键词 high-speed machining adiabatic shear band subsurface damage dynamic recrystallization
下载PDF
Effect of deep cryogenic treatment on the microstructural,mechanical and ballistic properties of AA7075-T6 aluminum alloy 被引量:1
18
作者 S.Dharani kumar U.Magarajan +1 位作者 Saurabh S Kumar Rodríguez-Millan M 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第12期101-110,共10页
The study focused on investigating the effect of Deep Cryogenic Treatment(DCT)on the mechanical and ballistic properties of AA7075-T6 aluminum alloy.The microstructure,microhardness,tensile strength,and impact strengt... The study focused on investigating the effect of Deep Cryogenic Treatment(DCT)on the mechanical and ballistic properties of AA7075-T6 aluminum alloy.The microstructure,microhardness,tensile strength,and impact strength of the Base Material(BM)and DCT-treated 7075 samples were analyzed through metallographic analysis and mechanical tests.The microstructure of the DCT-treated 7075 samples revealed fine grains and a distribution of secondary phase particles.The tensile strength,impact strength,and microhardness of DCT-treated samples increased by 7.41%,4%,and 9.68%,respectively,compared to the BM samples.The fractography analysis of the tensile samples showed cleavage facets,microvoids,and dimples in both the samples.The ballistic behavior of the BM and DCT target plates were studied by impacting hard steel core projectiles at a velocity of 750±10 m/s.The target plates failed due to petaling and ductile hole enlargement,and the depth of penetration(DOP)of the DCT target was less than that of the BM target,indicating a higher ballistic resistance.The post-ballistic microstructure examination of the target plates showed the formation of an Adiabatic Shear Band(ASB)without any cracks.It was concluded that the DCT treatment improved the mechanical and ballistic properties of the aluminum alloy due to grain refinement and high dislocation density. 展开更多
关键词 Deep cryogenic treatment AA7075-T6 Mechanical properties BALLISTIC adiabatic shear band
下载PDF
Ballistic tests on hot-rolled Ti-6Al-4V plates:Experiments and numerical approaches
19
作者 Alexander Janda Benjamin James Ralph +6 位作者 Yael Demarty Marcel Sorger Stefan Ebenbauer Aude Prestl Ingo Siller Martin Stockinger Helmut Clemens 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第8期39-53,共15页
Superior ballistic performance and the lightweight character of Ti alloys are considered as main reasons for their use in armour applications against a broad spectrum of ballistic threats,e.g.bullet,fragment or blast ... Superior ballistic performance and the lightweight character of Ti alloys are considered as main reasons for their use in armour applications against a broad spectrum of ballistic threats,e.g.bullet,fragment or blast impact.Because dynamic loading caused by typical penetrators is characterized by high strain rates,only specific test methods allow a closer investigation of the respective material behaviour.In the present study,quasi-static and dynamic compression tests as well as ballistic tests were conducted on a twophase a+βalloy Ti-6Al-4V(in m%)manufactured by hot-rolling.Post-deformation heat treatments,influencing microstructure and mechanical properties were applied in order to compare three different microstructural configurations:as-rolled,mill-annealed and bimodal.While,on the one hand,ballistic tests were employed for the determination of the ballistic limit velocity v_(50),compression tests,on the other hand,delivered essential input parameters for the application of the Johnson-Cook constitutive model in a finite element simulation of the impact event.The comparison of experimental results to simulation results was supplemented by means of microstructural characterization of tested samples with the focus set on the prevalently observed deformation and damage mechanisms,as for example adiabatic shearing. 展开更多
关键词 TI-6AL-4V Ballistic performance Split Hopkinson pressure bar FE simulation adiabatic shear bands Intermetallic phase
下载PDF
Dynamic fracture of Ti-6Al-4V alloy in Taylor impact test 被引量:4
20
作者 任宇 谭成文 +1 位作者 张静 王富耻 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第2期223-235,共13页
The dynamic fracture behaviors of Ti-6Al-4V alloy at high strain rate loading were investigated systemically through Taylor impact test, over the range of impact velocities from 145 m/s to 306 m/s. The critical impact... The dynamic fracture behaviors of Ti-6Al-4V alloy at high strain rate loading were investigated systemically through Taylor impact test, over the range of impact velocities from 145 m/s to 306 m/s. The critical impact velocity of fracture ranges from 217 m/s to 236 m/s. Smooth surfaces and ductile dimple areas were observed on the fracture surfaces. As the impact velocity reached 260 m/s, the serious melting regions were also observed on the fracture surfaces. Self-organization of cracks emerges when the impact velocity reaches 260 m/s, while some special cracks whose "tips" are not sharp but arc and smooth, and without any evidence of deformation or adiabatic shear band were also observed on the impact end surfaces. Examination of the sections of these special cracks reveals that the cracks expand along the two maximum shear stress directions respectively, and finally intersect as a tridimensional "stagger ridge" structure. 展开更多
关键词 Ti-6Al-4V alloy dynamic fracture behavior adiabatic shear band Taylor impact test
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部