The influence of adipic acid on the formation and corrosion resistance of anodic oxide film fabricated on 2024 aluminum alloy was investigated. The morphology was investigated by scanning electron microscopy (SEM) a...The influence of adipic acid on the formation and corrosion resistance of anodic oxide film fabricated on 2024 aluminum alloy was investigated. The morphology was investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM), respectively. The corrosion resistance was evaluated by electrochemical impedance spectroscopy (EIS). The results showed that the adipic acid was absorbed at the electrolyte/anodic layer interface during anodizing. The corrosion rate of anodic film decreased and the film thickness increased. The film was uniform and compact especially at the film/substrate interface. After sealing procedure, anodic film formed with the addition of adipic acid exhibited improved dielectric property and corrosion resistance in aggressive environment.展开更多
Using a laser detecting system, solubility data were measured for adipic acid dissolved in six pure solvents, namely, cyclohexanone, cyclohexanol, acetic acid, N,N-dimethylformamide, N,N-dimethylacetamide, and dimethy...Using a laser detecting system, solubility data were measured for adipic acid dissolved in six pure solvents, namely, cyclohexanone, cyclohexanol, acetic acid, N,N-dimethylformamide, N,N-dimethylacetamide, and dimethylsulfoxide at the temperature range from 293.15K to 353.15K. All these data were regressed by 2h, NRTL, Wilson, and the modified Wilson models. For the study of six, 2h, NRTL, and the modified Wilson models were found to provide an accurate mathematical representation of the experimental results, with overall average absolute relative deviations between measured and calculated values as 1.74%, 2.06%, and 3.06%, respectively. The results showed that the λh model is the most suitable for description of the solid-liquid equilibrium containing adipic acid.展开更多
Using a simple and reliable apparatus, the solubilities of adipic acid in water, ethanol, chloroform, n-butanol and acetone are determined by the analytic method. The results are correlated with λh equation, Apelblat...Using a simple and reliable apparatus, the solubilities of adipic acid in water, ethanol, chloroform, n-butanol and acetone are determined by the analytic method. The results are correlated with λh equation, Apelblat equation, and UNIFAC equation. The solubilities calculated by these models are in good agreement with experi-mental data, so that the models can meet the requirements of engineering design.展开更多
The reaction mechanism of the liquid phase ammoniation of adipic acid to adiponitrile was studied experimentally in a semi-batch reactor. Macrokinetics of the main and side reactions were identified to minimize corros...The reaction mechanism of the liquid phase ammoniation of adipic acid to adiponitrile was studied experimentally in a semi-batch reactor. Macrokinetics of the main and side reactions were identified to minimize corrosion and coking to prolong the operation period, to increase the yield of adiponitrile and to improve the design of the reactor. Macrokinetic equations of ammoniation-neutralization of adipic acid and dehydration were of first-order to adipic concentration cB≥3.5% and of second order for cB≥3.5%. Catalyst H3PO4 reduced the activation energy of neutralization and dehydration reactions of adipic acid and was significantly important for the second step of dehydration to produce adiponitrile.展开更多
Adipic acid is an important petrochemical product,and its production process emits a high concentration of greenhouse gas N_2 O.This paper aims to provide quantitative references for relevant authorities to formulate ...Adipic acid is an important petrochemical product,and its production process emits a high concentration of greenhouse gas N_2 O.This paper aims to provide quantitative references for relevant authorities to formulate greenhouse gas control roadmaps.The forecasting method of this paper is consistent with the published national inventory in terms of caliber.Based on the N_2 O abatement technical parameters of adipic acid and the production trend,this paper combines the scenario analysis and provides a measurement of comprehensive N_2 O abatement effect of the entire industry in China.Four future scenarios are assumed.The baseline scenario(BAUS) is a frozen scenario.Three emission abatement scenarios(ANAS,SNAS,and ENAS) are assumed under different strength of abatement driving parameters.The results show that China's adipic acid production process can achieve increasingly significant N_2 O emission abatement effects.Compared to the baseline scenario,by 2030,the N_2 O emission abatements of the three emission abatement scenarios can reach 207-399 kt and the emission abatement ratios can reach 32.5%-62.6%.By 2050,the N_2 O emission abatements for the three emission abatement scenarios can reach 387-540 kt and the emission abatement ratios can reach 71.4%-99.6%.展开更多
The adipic acid is an important intermediate in the production of nylon,polyurethane and polye ster resin s.The industrial approach for preparing adipic acid is through the liquid catalytic oxidation of KA oil with ni...The adipic acid is an important intermediate in the production of nylon,polyurethane and polye ster resin s.The industrial approach for preparing adipic acid is through the liquid catalytic oxidation of KA oil with nitric acid.In this work,a comprehensive model is developed for this reaction based on the kinetic study conducted in a continuous flow tubular reactor.The kinetic model fits well with the experimental results across the experimental conditions,and the average relative error between the calculated and experimental values is 5.7%.Results show that there was an induction period at the early stage of reaction.Moreover,it is found that at temperature range of 328-358 K,the formation rate of adipic acid strongly dependents on the temperature and nitric acid concentration.The developed model is used to predict the yield of adipic acid at 359-368 K.The work in this study could provide much knowledge for industrial tubular reactor design.展开更多
Adipic acid is a dicarboxylic acid of great industrial importance,mainly used in the production of nylon-6,6 and polyurethane.The use of nitric acid as an oxidant in the industrial production of adipic acid poses sign...Adipic acid is a dicarboxylic acid of great industrial importance,mainly used in the production of nylon-6,6 and polyurethane.The use of nitric acid as an oxidant in the industrial production of adipic acid poses significant carbon footprint to the environment.Clean adipic acid synthesis methods using a heterogeneous catalyst with H2O2 as oxidant and water as solvent have potential advantages of low catalyst cost,easy synthesis and recovery,cleanness and environmental protection.In this work,hexagonal mesoporous silicate materials were synthesized by a sol–gel method and evaluated for cyclohexanol/cyclohexanone oxidation to adipic acid.The physical and chemical properties of Fe-HMS were characterized by XRD,HR-TEM,BET and UV–Vis.The experimental results showed that Fe-HMS materials show pore sizes ranging from 2–3 nm.W-and Mo-based polyoxometalates were also evaluated and compared to the Fe-based HMS catalysts.To improve the adipic acid yield,the influence of the transition metal as well as the effect of metal loading,reaction temperature and catalyst amount on the catalytic performances of Fe-HMS have been investigated in details.When Si/Fe atomic ratio=100,Fe-HMS catalyst shows the highest activity,with a cyclohexanone conversion of 92.3%and adipic acid selectivity of 29.4%.The reaction pathway of cyclohexanone oxidation was further proposed based on experimental data.展开更多
The goal of this work was to measure the heat transfer rates from thermofluid, Therminol 66, to two phase change materials, D-mannitol and adipic acid. It concerns the determination of heat transfer coefficients for t...The goal of this work was to measure the heat transfer rates from thermofluid, Therminol 66, to two phase change materials, D-mannitol and adipic acid. It concerns the determination of heat transfer coefficients for the design of a concentrated solar energy plant requiring PCM thermal energy storage and is part of a wider set of experiments, where several PCMs were tested. An experimental installation was used with a cylindrical vessel with three tubes disposed almost horizontally (5°inclination), containing the phase change material, around which the thermal fluid flowed almost perpendicular to the tubes. The experimental installation allowed to recreate heating and cooling cycles. In order to evaluate the influence of the flow on the rate at which the heating and cooling processes took place, tests were performed at different thermofluid mass flow rates, concluding that there is no great influence, since the thermal resistance inside the tubes is much higher than on the outside. D-mannitol and adipic acid, present different phase change temperatures, 164°C for D-mannitol and 152°C for adipic acid. The average heat transfer coefficient, during the phase change process, was of 340 W/(m<sup>2</sup>K) for D-mannitol and 1320 W/(m<sup>2</sup>K) for adipic acid.展开更多
The influences of kinds and level of catalyst, time of decomposition reaction on the distribution of dibasic acid and apparent yield of adipic acid were researched; the acidic washing waste water (BI waste water) pr...The influences of kinds and level of catalyst, time of decomposition reaction on the distribution of dibasic acid and apparent yield of adipic acid were researched; the acidic washing waste water (BI waste water) producing from the equipment of cyclohexane oxidation by air was as stuff, the component of products by decomposed and oxidated in different conditions were analysed. It indicated that in the presence of cobalt salt the apparent yield of adipic acid was upto 10%-12% for the total BI waste water after the concentrated BI waste water refluxed for two hours, and then oxidated by nitric acid.展开更多
Carbon dots(CDs)have uniquely structural,physicochemical and photochemical properties,suggesting a promising platform for catalysis applications.The in-depth understanding of the structure-activity relationship in the...Carbon dots(CDs)have uniquely structural,physicochemical and photochemical properties,suggesting a promising platform for catalysis applications.The in-depth understanding of the structure-activity relationship in the CDs-based catalyst system needs to know the effect of the crystalline core on their catalytic performance.The efficient catalytic oxidation of cyclohexane is an urgent challenge in current chemical industry,in which,adipic acid(AA)plays an important role in industry for synthesis of nylon6 and nylon-66.Here,we fabricated the pristine CDs by electrochemical etching graphite rod method and derived CDs with high crystalline core(CD-600,CD-800,and CD-1100)through a thermal treatment method in tube furnace.Furthermore,these CDs performed an outstanding catalytic performance for one-step synthesis of AA from cyclohexane.With the help of machine learning(ML),the deep correlations between features(structures of CDs,catalytic conditions)and catalytic performances were investigated by XGBoost(XGB)model.Then under the optimization and prediction of XGB,it was found that high crystalline core preceded the other features and CD-1100 could get the best conversion of 30.696%and selectivity to AA of 92.52%at reaction conditions of 130℃,1.5 MPa,and 10 h.This work pioneered the application of ML in industrial issues and demonstrated a comprehensive understanding on CDs as catalyst to realize one-step synthesis of AA.展开更多
The catalysis of chloridized metalloporphyrins in the oxidation of cyclohexane to adipic acid was systemati-cally investigated.The turnover numbers(TON)data of 19 catalysts were obtained experimentally under optimal r...The catalysis of chloridized metalloporphyrins in the oxidation of cyclohexane to adipic acid was systemati-cally investigated.The turnover numbers(TON)data of 19 catalysts were obtained experimentally under optimal reac-tion conditions,and 2.4x106 TON for T(o-Cl)PP-MnIIICl catalyst at 2.0x10–6 mol/L of dosage was reached under the conditions of dioxygen pressure of 2.5 MPa at 150°C for 4 h.This was the best result reported for this reaction up to now.The QSAR models for each concerned metallopor-phyrin were established,where the catalytic activity was significantly correlated with the ELUMO(the energy level of the lowest unoccupied molecule orbit)and LM-N(the bond length between metal-nitrogen atoms).Using the QSAR models,four new metalloporphyrins with substituted nitro group were designed,and their catalytic activities were predicted.The experimental TON data of newly designed porphyrins were in good agreement with the predicted ones,and the square of their correlation coefficient was more than 0.958.The above results demonstrated that the proposed structure-activity relationship model could be applied to design some new metalloporphyrin catalysts,and to predict their catalytic activity in cyclohexane oxidation.展开更多
Because of multiple potential reaction sites and variable oxidation depths,oxidation of cyclohexene can lead to a mixture of products with different oxidation states and functional groups,such as 7-oxabicyclo[4.1.0]he...Because of multiple potential reaction sites and variable oxidation depths,oxidation of cyclohexene can lead to a mixture of products with different oxidation states and functional groups,such as 7-oxabicyclo[4.1.0]heptane,trans/cis-cyclohexane-1,2-diol,cyclohex-2-en-1-ol,cyclohex-2-en-1-one,and even adipic acid.These products are broadly and abundantly used intermediates in the chemical industry;therefore,controllable oxidation reactions for cyclohexene that can selectively afford the targeted products are synthetically valuable for applications in both the academy and industry,thus becoming the aim of synthetic and catalytic chemists in the field.Many reports on selective oxidation of cyclohexene have recently appeared in the literature because of its significance.This short review summarizes the recent advances on this subject,and the contents are mainly classified based on the chosen oxidants.We hope that this review can provide a useful guide for controllable and selective catalytic oxidation of cyclohexene for interested readers from both the academy and industry.展开更多
A novel binucleus complex [Cd2(phen)4(adip)(NO3)2] (phen = phenanthroline, H2adip = adipic acid) has been synthesized by the reaction of phen and H2adip with cadmium(Ⅱ) salt. Elemental analysis, IR spectra ...A novel binucleus complex [Cd2(phen)4(adip)(NO3)2] (phen = phenanthroline, H2adip = adipic acid) has been synthesized by the reaction of phen and H2adip with cadmium(Ⅱ) salt. Elemental analysis, IR spectra and X-ray crystal structure analysis were carried out to determine the crystal structure of the title complex. The crystal belongs to triclinic, space group P1^- with a = 9.638(7), b = 10.315(7), c = 13.109(10) A, α = 88.305(11), β = 69.011(11), γ = 75.818(11)°, C27H20N5O5Cd, Mr = 606.88, Z = 2, V = 1177.2(14)A^3, Dc = 1.712 g/cm^3,μ= 0.979 mm^-1, -8≤h ≤11, -12≤k≤ 12, -10≤l≤ 15, F(000) = 610, Rint = 0.0314, R = 0.0739 and wR = 0.1922 (Ⅰ〉 2σ(Ⅰ). The cadmium atom is seven-coordinated in a distorted pentagonal bipyramidal configuration. The complex forms a 2-D supramolecular framework by C-H…O weak interactions and π-π stacking of neighbouring phen ligands.展开更多
The coordination polymer,[Mn3(L) 2(adip) 3]·2H2O(L = 2-(4-fluorophenyl) -1H-imidazo[4,5-f] [1,10]phenanthroline and H2adip = adipic acid) ,has been synthesized under hydro-thermal conditions and character...The coordination polymer,[Mn3(L) 2(adip) 3]·2H2O(L = 2-(4-fluorophenyl) -1H-imidazo[4,5-f] [1,10]phenanthroline and H2adip = adipic acid) ,has been synthesized under hydro-thermal conditions and characterized by elemental analysis,IR and single-crystal X-ray diffraction. It crystallizes in triclinic,space group P1^- with a = 8.4085(11) ,b = 11.1273(14) ,c = 14.5758(18) ,α = 78.528(2) ,β = 75.425(2) ,γ = 78.143(2) °,V = 1276.0(3) A^3,Z = 1,C56H50F2Mn3N8O14,Mr = 1261.86,Dc = 1.642 g/cm^3,F(000) = 647,μ(MoKa) = 0.819 mm^-1,R = 0.0446 and wR = 0.1008. The backbones of the two types of adip dianions link the neighboring trinuclear Mn(Ⅱ) clusters to yield a two-dimensional layer structure. The large conjugated L ligands are located on both sides of the two-dimensional layers. Additionally,the O-H···O,O-H···N and N-H···O hydrogen bonds further stabilize the structure.展开更多
Aging of a solid composite propellant containing HTPB/AP/AL was performed in order to validate the conformance of the accelerated aging data to the Arrhenius law. The main objective of the work was to examine the infl...Aging of a solid composite propellant containing HTPB/AP/AL was performed in order to validate the conformance of the accelerated aging data to the Arrhenius law. The main objective of the work was to examine the influence of the aziridine bonding agents family on the propellant aging. Aging of the prepared propellant samples was conducted as follows: 1. Four samples, one free of bonding agents, and three containing aziridine based bonding agents MAPO,HX-752, MAT4 were aged at 65°C. 2. Another four samples based on HX-752, MAT4 with different curing agents were aged at 65°C. The measured mechanical properties of the free bonding agent propellant samples were very far from the specifications and this illustrates the importance of the bonding agents in both the preparation and the aging phases.The prepared bonding agent 'MAT4' gave remarkable improvements of the mechanical properties comparing with HX-752 and MAPO. The aziridine bonding agents family inhibited the rate of decomposition of the propellant during the aging periods and supported the propellant matrix against decomposition at the elevate temperatures. Using of HMDI as curing agent gave slight better mechanical properties to the IPDI.展开更多
The 3-ketoacyl-CoA thiolase is the rate-limiting enzyme for linear dicarboxylic acids production.However,the promiscuous substrate specificity and suboptimal catalytic performance have restricted its application.Here ...The 3-ketoacyl-CoA thiolase is the rate-limiting enzyme for linear dicarboxylic acids production.However,the promiscuous substrate specificity and suboptimal catalytic performance have restricted its application.Here we present both biochemical and structural analyses of a high-efficiency 3-ketoacyl-CoA thiolase Tfu_0875.Notably,Tfu_0875 displayed heightened activity and substrate specificity for succinyl-CoA,a key precursor in adipic acid production.To enhance its performance,a deep learning approach(DLKcat)was employed to identify effective mutants,and a computational strategy,known as the greedy accumulated strategy for protein engineering(GRAPE),was used to accumulate these effective mutants.Among the mutants,Tfu_0875N249W/L163H/E217L exhibited the highest specific activity(320%of wild-type Tfu_0875),the greatest catalytic efficiency(kcat/KM=1.00 min-1mM-1),the highest succinyl-CoA specificity(KM=0.59 mM,28.1%of Tfu_0875)and dramatically reduced substrate binding energy(-30.25 kcal mol^(-1)v.s.-15.94 kcal mol^(-1)).A structural comparison between Tfu_0875N249W/L163H/E217L and the wild type Tfu_0875 revealed that the increased interaction between the enzyme and succinyl-CoA was the primary reason for the enhanced enzyme activity.This interaction facilitated rapid substrate anchoring and stabilization.Furthermore,a reduced binding pocket volume improved substrate specificity by enhancing the complementarity between the binding pocket and the substrate in stereo conformation.Finally,our rationally designed mutant,Tfu_0875N249W/L163H/E217L,increased the adipic acid titer by 1.35-fold compared to the wild type Tfu_0875 in shake flask.The demonstrated enzymatic methods provide a promising enzyme variant for the adipic acid production.The above effective substrate binding pocket engineering strategy can be beneficial for the production of other industrially competitive biobased chemicals when be applied to other thiolases.展开更多
Herein,polyethersulfone(PES)and sulfonated polysulfone(SPSf)blend membranes were prepared with addition of sulfonated polyethersulfone(SPES)as a hydrophilic polymer and adipic acid as a porogen via non-solvent induced...Herein,polyethersulfone(PES)and sulfonated polysulfone(SPSf)blend membranes were prepared with addition of sulfonated polyethersulfone(SPES)as a hydrophilic polymer and adipic acid as a porogen via non-solvent induced phase separation method for effective fractionation of dyes based on the influence of steric hindrance and charge effect.Raman spectroscopy and molecular dynamic simulation modeling confirmed that hydrogen bonds between PES,SPSf,SPES,and adipic acid were crucial to membrane formation and spatial arrangement.Further addition of hydrophilic SPES resulted in a membrane with reduced pore size and molecular weight cut-off as well as amplified negative charge and pure water permeance.During separation,the blend membranes exhibited higher rejection rates for nine types of small molecular weight(269.3–800 Da)dyes than for neutral polyethylene glycol molecules(200–1000 Da).This was attributed to the size effect and the synergistic effect between steric hindrance and charge repulsion.Notably,the synergistic impact decreased with dye molecular weight,while greater membrane negative charge enhanced small molecular dye rejection.Ideal operational stability and anti-fouling performance were best observed in M2(PES/SPSf/SPES,3.1 wt%).Summarily,this study demonstrates that SPES with–SO3‒functional groups can be applied to control the microstructure and separation of membranes.展开更多
基金Project(51271012)supported by the National Natural Science Foundation of China
文摘The influence of adipic acid on the formation and corrosion resistance of anodic oxide film fabricated on 2024 aluminum alloy was investigated. The morphology was investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM), respectively. The corrosion resistance was evaluated by electrochemical impedance spectroscopy (EIS). The results showed that the adipic acid was absorbed at the electrolyte/anodic layer interface during anodizing. The corrosion rate of anodic film decreased and the film thickness increased. The film was uniform and compact especially at the film/substrate interface. After sealing procedure, anodic film formed with the addition of adipic acid exhibited improved dielectric property and corrosion resistance in aggressive environment.
文摘Using a laser detecting system, solubility data were measured for adipic acid dissolved in six pure solvents, namely, cyclohexanone, cyclohexanol, acetic acid, N,N-dimethylformamide, N,N-dimethylacetamide, and dimethylsulfoxide at the temperature range from 293.15K to 353.15K. All these data were regressed by 2h, NRTL, Wilson, and the modified Wilson models. For the study of six, 2h, NRTL, and the modified Wilson models were found to provide an accurate mathematical representation of the experimental results, with overall average absolute relative deviations between measured and calculated values as 1.74%, 2.06%, and 3.06%, respectively. The results showed that the λh model is the most suitable for description of the solid-liquid equilibrium containing adipic acid.
基金Supported by the Natural Science Foundation of Henan Province (0511021700)
文摘Using a simple and reliable apparatus, the solubilities of adipic acid in water, ethanol, chloroform, n-butanol and acetone are determined by the analytic method. The results are correlated with λh equation, Apelblat equation, and UNIFAC equation. The solubilities calculated by these models are in good agreement with experi-mental data, so that the models can meet the requirements of engineering design.
文摘The reaction mechanism of the liquid phase ammoniation of adipic acid to adiponitrile was studied experimentally in a semi-batch reactor. Macrokinetics of the main and side reactions were identified to minimize corrosion and coking to prolong the operation period, to increase the yield of adiponitrile and to improve the design of the reactor. Macrokinetic equations of ammoniation-neutralization of adipic acid and dehydration were of first-order to adipic concentration cB≥3.5% and of second order for cB≥3.5%. Catalyst H3PO4 reduced the activation energy of neutralization and dehydration reactions of adipic acid and was significantly important for the second step of dehydration to produce adiponitrile.
基金financial support by the Ministry of Science and Technology of China (Grant No.2018YFC1509006)the National Natural Science Foundation of China (Grant No.71874096)+1 种基金the Macao SAR Government Higher Education Fundthe Macao University of Science and Technology (Grant No.FRG-19-008-MSB)。
文摘Adipic acid is an important petrochemical product,and its production process emits a high concentration of greenhouse gas N_2 O.This paper aims to provide quantitative references for relevant authorities to formulate greenhouse gas control roadmaps.The forecasting method of this paper is consistent with the published national inventory in terms of caliber.Based on the N_2 O abatement technical parameters of adipic acid and the production trend,this paper combines the scenario analysis and provides a measurement of comprehensive N_2 O abatement effect of the entire industry in China.Four future scenarios are assumed.The baseline scenario(BAUS) is a frozen scenario.Three emission abatement scenarios(ANAS,SNAS,and ENAS) are assumed under different strength of abatement driving parameters.The results show that China's adipic acid production process can achieve increasingly significant N_2 O emission abatement effects.Compared to the baseline scenario,by 2030,the N_2 O emission abatements of the three emission abatement scenarios can reach 207-399 kt and the emission abatement ratios can reach 32.5%-62.6%.By 2050,the N_2 O emission abatements for the three emission abatement scenarios can reach 387-540 kt and the emission abatement ratios can reach 71.4%-99.6%.
基金the Ningbo Science and Technology Plan Project (2018B10013)the Program of Shanghai Subject Chief Scientist (18XD1402000)。
文摘The adipic acid is an important intermediate in the production of nylon,polyurethane and polye ster resin s.The industrial approach for preparing adipic acid is through the liquid catalytic oxidation of KA oil with nitric acid.In this work,a comprehensive model is developed for this reaction based on the kinetic study conducted in a continuous flow tubular reactor.The kinetic model fits well with the experimental results across the experimental conditions,and the average relative error between the calculated and experimental values is 5.7%.Results show that there was an induction period at the early stage of reaction.Moreover,it is found that at temperature range of 328-358 K,the formation rate of adipic acid strongly dependents on the temperature and nitric acid concentration.The developed model is used to predict the yield of adipic acid at 359-368 K.The work in this study could provide much knowledge for industrial tubular reactor design.
基金supported by the National Natural Science Foundation(21706290)Natural Science Foundation of Shandong Province(ZR2017MB004,ZR2017BB007)+5 种基金Postdoctoral Research Funding of Shandong Province(201703016)Fundamental Research Funding of Qingdao(17-1-1-67-jch,17-1-1-80-jch)Qingdao Postdoctoral Research Funding(BY20170210)“the Fundamental Research Funds for the Central Universities”(18CX02145A,17CX02017A)new faculty start-up funding from China University of Petroleum(YJ201601058)China Postdoctoral Science Foundation(2017M612374)。
文摘Adipic acid is a dicarboxylic acid of great industrial importance,mainly used in the production of nylon-6,6 and polyurethane.The use of nitric acid as an oxidant in the industrial production of adipic acid poses significant carbon footprint to the environment.Clean adipic acid synthesis methods using a heterogeneous catalyst with H2O2 as oxidant and water as solvent have potential advantages of low catalyst cost,easy synthesis and recovery,cleanness and environmental protection.In this work,hexagonal mesoporous silicate materials were synthesized by a sol–gel method and evaluated for cyclohexanol/cyclohexanone oxidation to adipic acid.The physical and chemical properties of Fe-HMS were characterized by XRD,HR-TEM,BET and UV–Vis.The experimental results showed that Fe-HMS materials show pore sizes ranging from 2–3 nm.W-and Mo-based polyoxometalates were also evaluated and compared to the Fe-based HMS catalysts.To improve the adipic acid yield,the influence of the transition metal as well as the effect of metal loading,reaction temperature and catalyst amount on the catalytic performances of Fe-HMS have been investigated in details.When Si/Fe atomic ratio=100,Fe-HMS catalyst shows the highest activity,with a cyclohexanone conversion of 92.3%and adipic acid selectivity of 29.4%.The reaction pathway of cyclohexanone oxidation was further proposed based on experimental data.
文摘The goal of this work was to measure the heat transfer rates from thermofluid, Therminol 66, to two phase change materials, D-mannitol and adipic acid. It concerns the determination of heat transfer coefficients for the design of a concentrated solar energy plant requiring PCM thermal energy storage and is part of a wider set of experiments, where several PCMs were tested. An experimental installation was used with a cylindrical vessel with three tubes disposed almost horizontally (5°inclination), containing the phase change material, around which the thermal fluid flowed almost perpendicular to the tubes. The experimental installation allowed to recreate heating and cooling cycles. In order to evaluate the influence of the flow on the rate at which the heating and cooling processes took place, tests were performed at different thermofluid mass flow rates, concluding that there is no great influence, since the thermal resistance inside the tubes is much higher than on the outside. D-mannitol and adipic acid, present different phase change temperatures, 164°C for D-mannitol and 152°C for adipic acid. The average heat transfer coefficient, during the phase change process, was of 340 W/(m<sup>2</sup>K) for D-mannitol and 1320 W/(m<sup>2</sup>K) for adipic acid.
文摘The influences of kinds and level of catalyst, time of decomposition reaction on the distribution of dibasic acid and apparent yield of adipic acid were researched; the acidic washing waste water (BI waste water) producing from the equipment of cyclohexane oxidation by air was as stuff, the component of products by decomposed and oxidated in different conditions were analysed. It indicated that in the presence of cobalt salt the apparent yield of adipic acid was upto 10%-12% for the total BI waste water after the concentrated BI waste water refluxed for two hours, and then oxidated by nitric acid.
基金the National Key R&D Program of China(Nos.2020YFA0406103,2020YFA0406104,and 2020YFA0406101)National MCF Energy R&D Program of China(No.2018YFE0306105)+4 种基金Innovative Research Group Project of the National Natural Science Foundation of China(No.51821002)the National Natural Science Foundation of China(Nos.51725204,21771132,51972216,and 52041202)the Natural Science Foundation of Jiangsu Province(No.BK20190041)KeyArea Research and Development Program of GuangDong Province(No.2019B010933001)Collaborative Innovation Center of Suzhou Nano Science&Technology,the 111 Project,and Suzhou Key Laboratory of Functional Nano&Soft Materials.
文摘Carbon dots(CDs)have uniquely structural,physicochemical and photochemical properties,suggesting a promising platform for catalysis applications.The in-depth understanding of the structure-activity relationship in the CDs-based catalyst system needs to know the effect of the crystalline core on their catalytic performance.The efficient catalytic oxidation of cyclohexane is an urgent challenge in current chemical industry,in which,adipic acid(AA)plays an important role in industry for synthesis of nylon6 and nylon-66.Here,we fabricated the pristine CDs by electrochemical etching graphite rod method and derived CDs with high crystalline core(CD-600,CD-800,and CD-1100)through a thermal treatment method in tube furnace.Furthermore,these CDs performed an outstanding catalytic performance for one-step synthesis of AA from cyclohexane.With the help of machine learning(ML),the deep correlations between features(structures of CDs,catalytic conditions)and catalytic performances were investigated by XGBoost(XGB)model.Then under the optimization and prediction of XGB,it was found that high crystalline core preceded the other features and CD-1100 could get the best conversion of 30.696%and selectivity to AA of 92.52%at reaction conditions of 130℃,1.5 MPa,and 10 h.This work pioneered the application of ML in industrial issues and demonstrated a comprehensive understanding on CDs as catalyst to realize one-step synthesis of AA.
基金supported by the Key Project of Natural Science Foundation of Beijing(Grant No.2061001).
文摘The catalysis of chloridized metalloporphyrins in the oxidation of cyclohexane to adipic acid was systemati-cally investigated.The turnover numbers(TON)data of 19 catalysts were obtained experimentally under optimal reac-tion conditions,and 2.4x106 TON for T(o-Cl)PP-MnIIICl catalyst at 2.0x10–6 mol/L of dosage was reached under the conditions of dioxygen pressure of 2.5 MPa at 150°C for 4 h.This was the best result reported for this reaction up to now.The QSAR models for each concerned metallopor-phyrin were established,where the catalytic activity was significantly correlated with the ELUMO(the energy level of the lowest unoccupied molecule orbit)and LM-N(the bond length between metal-nitrogen atoms).Using the QSAR models,four new metalloporphyrins with substituted nitro group were designed,and their catalytic activities were predicted.The experimental TON data of newly designed porphyrins were in good agreement with the predicted ones,and the square of their correlation coefficient was more than 0.958.The above results demonstrated that the proposed structure-activity relationship model could be applied to design some new metalloporphyrin catalysts,and to predict their catalytic activity in cyclohexane oxidation.
文摘Because of multiple potential reaction sites and variable oxidation depths,oxidation of cyclohexene can lead to a mixture of products with different oxidation states and functional groups,such as 7-oxabicyclo[4.1.0]heptane,trans/cis-cyclohexane-1,2-diol,cyclohex-2-en-1-ol,cyclohex-2-en-1-one,and even adipic acid.These products are broadly and abundantly used intermediates in the chemical industry;therefore,controllable oxidation reactions for cyclohexene that can selectively afford the targeted products are synthetically valuable for applications in both the academy and industry,thus becoming the aim of synthetic and catalytic chemists in the field.Many reports on selective oxidation of cyclohexene have recently appeared in the literature because of its significance.This short review summarizes the recent advances on this subject,and the contents are mainly classified based on the chosen oxidants.We hope that this review can provide a useful guide for controllable and selective catalytic oxidation of cyclohexene for interested readers from both the academy and industry.
基金This work was supported by the Foundation of Education Committee of Liaoning Province (No. 2004c021) and Foundation of Excellent Personal of Shenyang Institute of Chemical Technology
文摘A novel binucleus complex [Cd2(phen)4(adip)(NO3)2] (phen = phenanthroline, H2adip = adipic acid) has been synthesized by the reaction of phen and H2adip with cadmium(Ⅱ) salt. Elemental analysis, IR spectra and X-ray crystal structure analysis were carried out to determine the crystal structure of the title complex. The crystal belongs to triclinic, space group P1^- with a = 9.638(7), b = 10.315(7), c = 13.109(10) A, α = 88.305(11), β = 69.011(11), γ = 75.818(11)°, C27H20N5O5Cd, Mr = 606.88, Z = 2, V = 1177.2(14)A^3, Dc = 1.712 g/cm^3,μ= 0.979 mm^-1, -8≤h ≤11, -12≤k≤ 12, -10≤l≤ 15, F(000) = 610, Rint = 0.0314, R = 0.0739 and wR = 0.1922 (Ⅰ〉 2σ(Ⅰ). The cadmium atom is seven-coordinated in a distorted pentagonal bipyramidal configuration. The complex forms a 2-D supramolecular framework by C-H…O weak interactions and π-π stacking of neighbouring phen ligands.
基金Supported by the Institute Foundation of Siping City (No.2009011)
文摘The coordination polymer,[Mn3(L) 2(adip) 3]·2H2O(L = 2-(4-fluorophenyl) -1H-imidazo[4,5-f] [1,10]phenanthroline and H2adip = adipic acid) ,has been synthesized under hydro-thermal conditions and characterized by elemental analysis,IR and single-crystal X-ray diffraction. It crystallizes in triclinic,space group P1^- with a = 8.4085(11) ,b = 11.1273(14) ,c = 14.5758(18) ,α = 78.528(2) ,β = 75.425(2) ,γ = 78.143(2) °,V = 1276.0(3) A^3,Z = 1,C56H50F2Mn3N8O14,Mr = 1261.86,Dc = 1.642 g/cm^3,F(000) = 647,μ(MoKa) = 0.819 mm^-1,R = 0.0446 and wR = 0.1008. The backbones of the two types of adip dianions link the neighboring trinuclear Mn(Ⅱ) clusters to yield a two-dimensional layer structure. The large conjugated L ligands are located on both sides of the two-dimensional layers. Additionally,the O-H···O,O-H···N and N-H···O hydrogen bonds further stabilize the structure.
文摘Aging of a solid composite propellant containing HTPB/AP/AL was performed in order to validate the conformance of the accelerated aging data to the Arrhenius law. The main objective of the work was to examine the influence of the aziridine bonding agents family on the propellant aging. Aging of the prepared propellant samples was conducted as follows: 1. Four samples, one free of bonding agents, and three containing aziridine based bonding agents MAPO,HX-752, MAT4 were aged at 65°C. 2. Another four samples based on HX-752, MAT4 with different curing agents were aged at 65°C. The measured mechanical properties of the free bonding agent propellant samples were very far from the specifications and this illustrates the importance of the bonding agents in both the preparation and the aging phases.The prepared bonding agent 'MAT4' gave remarkable improvements of the mechanical properties comparing with HX-752 and MAPO. The aziridine bonding agents family inhibited the rate of decomposition of the propellant during the aging periods and supported the propellant matrix against decomposition at the elevate temperatures. Using of HMDI as curing agent gave slight better mechanical properties to the IPDI.
基金supported by the National Key R&D Program of China(2022YFC2104600)National Natural Science Foundation of China(22378170)+1 种基金the Distinguished Young Scholars of Jiangsu Province(BK20220089)the Tianjin Synthetic Biotechnology Innovation Capacity Improvement Project(TSBICIP-KJGG-015).
文摘The 3-ketoacyl-CoA thiolase is the rate-limiting enzyme for linear dicarboxylic acids production.However,the promiscuous substrate specificity and suboptimal catalytic performance have restricted its application.Here we present both biochemical and structural analyses of a high-efficiency 3-ketoacyl-CoA thiolase Tfu_0875.Notably,Tfu_0875 displayed heightened activity and substrate specificity for succinyl-CoA,a key precursor in adipic acid production.To enhance its performance,a deep learning approach(DLKcat)was employed to identify effective mutants,and a computational strategy,known as the greedy accumulated strategy for protein engineering(GRAPE),was used to accumulate these effective mutants.Among the mutants,Tfu_0875N249W/L163H/E217L exhibited the highest specific activity(320%of wild-type Tfu_0875),the greatest catalytic efficiency(kcat/KM=1.00 min-1mM-1),the highest succinyl-CoA specificity(KM=0.59 mM,28.1%of Tfu_0875)and dramatically reduced substrate binding energy(-30.25 kcal mol^(-1)v.s.-15.94 kcal mol^(-1)).A structural comparison between Tfu_0875N249W/L163H/E217L and the wild type Tfu_0875 revealed that the increased interaction between the enzyme and succinyl-CoA was the primary reason for the enhanced enzyme activity.This interaction facilitated rapid substrate anchoring and stabilization.Furthermore,a reduced binding pocket volume improved substrate specificity by enhancing the complementarity between the binding pocket and the substrate in stereo conformation.Finally,our rationally designed mutant,Tfu_0875N249W/L163H/E217L,increased the adipic acid titer by 1.35-fold compared to the wild type Tfu_0875 in shake flask.The demonstrated enzymatic methods provide a promising enzyme variant for the adipic acid production.The above effective substrate binding pocket engineering strategy can be beneficial for the production of other industrially competitive biobased chemicals when be applied to other thiolases.
基金This work was financially supported by the National Natural Science Foundation of China(Grant Nos.22278318 and 21878230).
文摘Herein,polyethersulfone(PES)and sulfonated polysulfone(SPSf)blend membranes were prepared with addition of sulfonated polyethersulfone(SPES)as a hydrophilic polymer and adipic acid as a porogen via non-solvent induced phase separation method for effective fractionation of dyes based on the influence of steric hindrance and charge effect.Raman spectroscopy and molecular dynamic simulation modeling confirmed that hydrogen bonds between PES,SPSf,SPES,and adipic acid were crucial to membrane formation and spatial arrangement.Further addition of hydrophilic SPES resulted in a membrane with reduced pore size and molecular weight cut-off as well as amplified negative charge and pure water permeance.During separation,the blend membranes exhibited higher rejection rates for nine types of small molecular weight(269.3–800 Da)dyes than for neutral polyethylene glycol molecules(200–1000 Da).This was attributed to the size effect and the synergistic effect between steric hindrance and charge repulsion.Notably,the synergistic impact decreased with dye molecular weight,while greater membrane negative charge enhanced small molecular dye rejection.Ideal operational stability and anti-fouling performance were best observed in M2(PES/SPSf/SPES,3.1 wt%).Summarily,this study demonstrates that SPES with–SO3‒functional groups can be applied to control the microstructure and separation of membranes.