In this editorial,we comment on the paper by Muthu et al published in the recent issue of the journal.This editorial review focusses on the use of adipose-derived stem cells(ADSCs)in knee osteoarthritis treatment.We d...In this editorial,we comment on the paper by Muthu et al published in the recent issue of the journal.This editorial review focusses on the use of adipose-derived stem cells(ADSCs)in knee osteoarthritis treatment.We discuss the differences between the stromal vascular fraction and microfragmented adipose tissue and highlight the results of clinical studies comparing both treatments and the use of hyaluronic acid,platelet-rich plasma,and bone marrow aspirate concentrate.The use of expanded ADSCs is also discussed;moreover,concerns regarding treatment with ADSCs,particularly the heterogeneity of published studies and the need to standardize protocols to explore clinical potential is explored.展开更多
BACKGROUND Osteoarthritis(OA)is the most common joint disorder,is associated with an increasing socioeconomic impact owing to the ageing population.AIM To analyze and compare the efficacy and safety of bone-marrow-der...BACKGROUND Osteoarthritis(OA)is the most common joint disorder,is associated with an increasing socioeconomic impact owing to the ageing population.AIM To analyze and compare the efficacy and safety of bone-marrow-derived mesenchymal stromal cells(BM-MSCs)and adipose tissue-derived MSCs(AD-MSCs)in knee OA management from published randomized controlled trials(RCTs).METHODS Independent and duplicate electronic database searches were performed,including PubMed,EMBASE,Web of Science,and Cochrane Library,until August 2021 for RCTs that analyzed the efficacy and safety of AD-MSCs and BM-MSCs in the management of knee OA.The visual analog scale(VAS)score for pain,Western Ontario McMaster Universities Osteoarthritis Index(WOMAC),Lysholm score,Tegner score,magnetic resonance observation of cartilage repair tissue score,knee osteoarthritis outcome score(KOOS),and adverse events were analyzed.Analysis was performed on the R-platform using OpenMeta(Analyst)software.Twenty-one studies,involving 936 patients,were included.Only one study compared the two MSC sources without patient randomization;hence,the results of all included studies from both sources were pooled,and a comparative critical analysis was performed.RESULTS At six months,both AD-MSCs and BM-MSCs showed significant VAS improvement(P=0.015,P=0.012);this was inconsistent at 1 year for BM-MSCs(P<0.001,P=0.539),and AD-MSCs outperformed BM-MSCs compared to controls in measures such as WOMAC(P<0.001,P=0.541),Lysholm scores(P=0.006;P=0.933),and KOOS(P=0.002;P=0.012).BM-MSC-related procedures caused significant adverse events(P=0.003)compared to AD-MSCs(P=0.673).CONCLUSION Adipose tissue is superior to bone marrow because of its safety and consistent efficacy in improving pain and functional outcomes.Future trials are urgently warranted to validate our findings and reach a consensus on the ideal source of MSCs for managing knee OA.展开更多
Recruitment of stem cells and partially differentiated progenitor cells is a process which accompanies and facilitates the progression of cancer.One of the factors complicating the clinical course of cancer is obesity...Recruitment of stem cells and partially differentiated progenitor cells is a process which accompanies and facilitates the progression of cancer.One of the factors complicating the clinical course of cancer is obesity,a progressively widespread medical condition resulting from overgrowth of white adipose tissue(WAT),com-monly known as white fat.The mechanisms by which obesity in uences cancer risk and progression are not completely understood.Cells of WAT secret soluble molecules(adipokines) that could stimulate tumor growth,although there is no consensus on which cell populations and which adipokines are important.Recent reports suggest that WAT-derived mesenchymal stem(stromal) cells,termed adipose stem cells(ASC),may represent a cell population linking obesity and cancer.Studies in animal models demonstrate that adipokines secreted by ASC can promote tumor growth by assisting in formation of new blood vessels,a process necessary for expansion of tumor mass.Importantly,migration of ASC from WAT to tumors has been demonstrated,indicating that the tumor microenvironment in cancer may be modulated by ASC-derived trophic factors in a paracrine rather than in an endocrine manner.Here,we review possible positive and adverse implications of progenitor cell recruitment into the diseased sites with a particular emphasis on the role in cancer progression of progenitors that are expanded in obesity.展开更多
Knee osteoarthritis is a degenerative condition with a significant disease burden and no disease-modifying therapy.Definitive treatment ultimately requires joint replacement.Therapies capable of regenerating cartilage...Knee osteoarthritis is a degenerative condition with a significant disease burden and no disease-modifying therapy.Definitive treatment ultimately requires joint replacement.Therapies capable of regenerating cartilage could significantly reduce financial and clinical costs.The regenerative potential of mesenchymal stromal cells(MSCs)has been extensively studied in the context of knee osteoarthritis.This has yielded promising results in human studies,and is likely a product of immunomodulatory and chondroprotective biomolecules produced by MSCs in response to inflammation.Adipose-derived MSCs(ASCs)are becoming increasingly popular owing to their relative ease of isolation and high proliferative capacity.Stromal vascular fraction(SVF)and micro-fragmented adipose tissue(MFAT)are produced by the enzymatic and mechanical disruption of adipose tissue,respectively.This avoids expansion of isolated ASCs ex vivo and their composition of heterogeneous cell populations,including immune cells,may potentiate the reparative function of ASCs.In this editorial,we comment on a multicenter randomized trial regarding the efficacy of MFAT in treating knee osteoarthritis.We discuss the study’s findings in the context of emerging evidence regarding adipose-derived regenerative therapies.An underlying mechanism of action of ASCs is proposed while drawing important distinctions between the properties of isolated ASCs,SVF,and MFAT.展开更多
Adipose-derived stem cells(ASCs) are mesenchymal stem cells(MSCs) that are obtained from abundant adipose tissue, adherent on plastic culture flasks, can be expanded in vitro, and have the capacity to differ-entiate i...Adipose-derived stem cells(ASCs) are mesenchymal stem cells(MSCs) that are obtained from abundant adipose tissue, adherent on plastic culture flasks, can be expanded in vitro, and have the capacity to differ-entiate into multiple cell lineages. Unlike bone marrow-derived MSCs, ASCs can be obtained from abundant adipose tissue by a minimally invasive procedure, which results in a high number of cells. Therefore, ASCs are promising for regenerating tissues and organs dam-aged by injury and diseases. This article reviews the implications of ASCs in tissue regeneration.展开更多
Adipose tissue-deried stem cells( ADSCs) are adult stem cells that can be easily harvested from subcutaneous adipose tissue. Many studies have demonstrated that ADSCs differentiate into vascular endothelial cells(VECs...Adipose tissue-deried stem cells( ADSCs) are adult stem cells that can be easily harvested from subcutaneous adipose tissue. Many studies have demonstrated that ADSCs differentiate into vascular endothelial cells(VECs), vascular smooth muscle cells(VSMCs), and cardiomyocytes in vitro and in vivo. However, ADSCs may fuse with tissue-resident cells and obtain the corresponding characteristics of those cells. If fusion occurs, ADSCs may express markers of VECs, VSMCs, and cardiomyocytes without direct differentiation into these cell types. ADSCs also produce a variety of paracrine factors such as vascular endothelial growth factor, hepatocyte growth factor, and insulin-like growth factor-1 that have proangiogenic and/or antiapoptotic activities. Thus, ADSCs have the potential to regenerate the cardiovascular system via direct differentiation into VECs, VSMCs, and cardiomyocytes, fusion with tissueresident cells, and the production of paracrine factors. Numerous animal studies have demonstrated the efficacy of ADSC implantation in the treatment of acute myocardial infarction(AMI), ischemic cardiomyopathy(ICM), dilated cardiomyopathy, hindlimb ischemia, and stroke. Clinical studies regarding the use of autologous ADSCs for treating patients with AMI and ICM have recently been initiated. ADSC implantation has been reported as safe and effective so far. Therefore, ADSCs appear to be useful for the treatment of cardiovascular disease. However, the tumorigenic potential of ADSCs requires careful evaluation before their safe clinical application.展开更多
BACKGROUND Osteoarthritis(OA),a chronic age-related disease characterized by the slowly progressive destruction of articular cartilage,is one of the leading causes of disability.As a new strategy for treatment of OA,m...BACKGROUND Osteoarthritis(OA),a chronic age-related disease characterized by the slowly progressive destruction of articular cartilage,is one of the leading causes of disability.As a new strategy for treatment of OA,mesenchymal stem cells(MSCs)have the potential for articular cartilage regeneration.Meanwhile,thrombospondin 2(TSP2)promotes the chondrogenic differentiation of MSCs.AIM To investigate whether TSP2 induces chondrogenic differentiation of human adipose-derived MSCs(hADMSCs)and potentiates the therapeutic effects of hADMSCs in OA rabbits.METHODS We investigated the chondrogenic potential of TSP2 in hADMSCs by analyzing the expression of chondrogenic markers as well as NOTCH signaling genes in normal and TSP2 small interfering RNA(siRNA)-treated stem cells.Anterior cruciate ligament transection surgery was performed in male New Zealand white rabbits,and 8 wk later,hADMSCs(1.7×10^6 or 1.7×10^7 cells)were injected into the injured knees alone or in combination with intra-articular injection of TSP2(100 ng/knee)at 2-d intervals.OA progression was monitored by gross,radiological,and histological examinations.RESULTS In hADMSC culture,treatment with TSP2 increased the expression of chondrogenic markers(SOX9 and collagen Ⅱ)as well as NOTCH signaling genes(JAGGED1 and NOTCH3),which were inhibited by TSP2 siRNA treatment.In vivo,OA rabbits treated with hADMSCs or TSP2 alone exhibited lower degree of cartilage degeneration,osteophyte formation,and extracellular matrix loss 8 wk after cell transplantation.Notably,such cartilage damage was further alleviated by the combination of hADMSCs and TSP2.In addition,synovial inflammatory cytokines,especially tumor-necrosis factor-α,markedly decreased following the combination treatment.CONCLUSION The results indicate that TSP2 enhances chondrogenic differentiation of hADMSCs via JAGGED1/NOTCH3 signaling,and that combination therapy with hADMSCs and TSP2 exerts synergistic effects in the cartilage regeneration of OA joints.展开更多
Adipose tissue is a rich, ubiquitous and easily acces-sible source for multipotent stromal/stem cells and has, therefore, several advantages compared to other sourc-es of mesenchymal stromal/stem cells. Several studie...Adipose tissue is a rich, ubiquitous and easily acces-sible source for multipotent stromal/stem cells and has, therefore, several advantages compared to other sourc-es of mesenchymal stromal/stem cells. Several studies have tried to identify the origin of the stromal/stem cell population within adipose tissue in situ. This is a complicated attempt because no marker has currently been described which unambiguously identifies native adipose-derived stromal/stem cells(ASCs). Isolated and cultured ASCs are a non-uniform preparation consisting of several subsets of stem and precursor cells. Cultured ASCs are characterized by their expression of a panel of markers(and the absence of others), whereas their in vitro phenotype is dynamic. Some markers were ex-pressed de novo during culture, the expression of some markers is lost. For a long time, CD34 expression was solely used to characterize haematopoietic stem and progenitor cells, but now it has become evident that it is also a potential marker to identify an ASC subpopula-tion in situ and after a short culture time. Nevertheless, long-term cultured ASCs do not express CD34, perhaps due to the artificial environment. This review gives an update of the recently published data on the origin and phenotype of ASCs both in vivo and in vitro. In addition, the composition of ASCs(or their subpopula-tions) seems to vary between different laboratories andpreparations. This heterogeneity of ASC preparationsmay result from different reasons. One of the main problems in comparing results from different laborato-ries is the lack of a standardized isolation and culture protocol for ASCs. Since many aspects of ASCs, suchas the differential potential or the current use in clinical trials, are fully described in other recent reviews, this review further updates the more basic research issues concerning ASCs' subpopulations, heterogeneity andculture standardization.展开更多
Adipose-derived stem cells and bone marrow-derived stromal stem cells were co-cultured with untreated or Aβ1-40-treated PC12 cells, or grown in supernatant derived from untreated or Aβ1-40-treated PC12 cells. Analys...Adipose-derived stem cells and bone marrow-derived stromal stem cells were co-cultured with untreated or Aβ1-40-treated PC12 cells, or grown in supernatant derived from untreated or Aβ1-40-treated PC12 cells. Analysis by western blot and quantitative real-time PCR showed that protein levels of Nanog, Oct4, and Sox2, and mRNA levels of miR/125a/3p were decreased, while expression of insulin-like growth factor-2 and neuron specific enolase was increased. In comparison the generation of neuron specific enolase-positive cells was most successful when adipose-derived stem cells were co-cultured with Aβ1-40-treated PC12 cells. Our results demonstrate that adipose-derived stem cells and bone marrow-derived stromal stem cells exhibit trends of neuronal-like cell differentiation after co-culture with Aβ1-40-treated PC12 cells. This process may relate to a downregulation of miR-125a-3p mRNA expression and increased levels of insulin-like growth factor-2 expression.展开更多
β-mercaptoethanol can induce adipose-derived stromal cells to rapidly and efficiently differentiate into neurons in vitro.However,because of the short survival time of the differentiated cells,clinical applications f...β-mercaptoethanol can induce adipose-derived stromal cells to rapidly and efficiently differentiate into neurons in vitro.However,because of the short survival time of the differentiated cells,clinical applications for this technique are limited.As such,we examined apoptosis of neurons differentiated from adipose-derived stromal cells induced with β-mercaptoethanol in vitro using terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling and transmission electron microscopy.The results revealed that the number of surviving cells decreased and apoptosis rate increased as induction time extended.Taken together,these results suggest that apoptosis occurring in the process of adipose-derived stromal cells differentiating into neurons is the main cause of cell death.However,the mechanism underlying cellular apoptosis should be researched further to develop methods of controlling apoptosis for clinical applications.展开更多
β-mercaptoethanol induces in vitro adult adipose-derived stromal cells (ADSCs) to differentiate into neurons. However, the ultrastructural features of the differentiated neuronal-like cells remain unknown. In the p...β-mercaptoethanol induces in vitro adult adipose-derived stromal cells (ADSCs) to differentiate into neurons. However, the ultrastructural features of the differentiated neuronal-like cells remain unknown. In the present study, inverted phase contrast microscopy was utilized to observe β-mercaptoethanol-induced differentiation of neuronal-like cells from human ADSCs, and immunocytochemistry and real-time polymerase chain reaction were employed to detect expression of a neural stem cells marker (nestin), a neuronal marker (neuron-specific enolase), and a glial marker (glial fibrillary acidic protein). In addition, ultrastructure of neuronal-like cells was observed by transmission election microscopy. Results revealed highest expression rate of nestin and neuron-specific enolase at 3 and 5 hours following induced differentiation; cells in the 5-hour induction group exhibited a neuronal-specific structure, i.e., Nissl bodies. However, when induction solution was replaced by complete culture medium after 8-hour induction, the differentiated cells reverted to the fibroblast-like morphology from day 1. These results demonstrate that β-mercaptoethanol-induced ADSCs induced differentiation into neural stem cells, followed by morphology of neuronal-like cells. However, this differentiation state was not stable.展开更多
The quantity and survival time of astrocytes,which were differentiated from adult adipose-derived stromal cells after exposure to an inducer containing 3-isobutyl-1-methylxanthine,have thus far been unsatisfactory.The...The quantity and survival time of astrocytes,which were differentiated from adult adipose-derived stromal cells after exposure to an inducer containing 3-isobutyl-1-methylxanthine,have thus far been unsatisfactory.The present study investigated the growth and differentiation characteristics of induced astrocytes by observing their growth curves.After induction for 48 hours with an inducer containing 0.5% ethanol,some adult adult adipose-derived stromal cells displayed typical astrocytic morphology.The cell quantity gradually decreased with prolonged induction time.Nestin,glial fibrillary acidic protein,and S-100 expression reached peak levels at 14 days,but neuron-specific enolase was not expressed.These results suggest that the induced astrocytes reached their peak at 14 days.Further optimization of the culture environment may yield mature astrocytes with normal functions,in greater quantity,and prolonged survival time.展开更多
β-mercaptoethanol was used to induce in vitro neuronal differentiation of adipose-derived stromal cells. Within an 8-hour period post-differentiation, the induced cells exhibited typical neuronal morphology, and expr...β-mercaptoethanol was used to induce in vitro neuronal differentiation of adipose-derived stromal cells. Within an 8-hour period post-differentiation, the induced cells exhibited typical neuronal morphology, and expression of microtubule-associated protein 2 and neuron-specific enolase, which are markers of mature neurons, reached a peak at 5 hours. Specific organelle Nissl bodies of neurons were observed under transmission electron microscopy. Results of membrane potential showed that fluorescence intensity of cells was greater after 5 hours than adipose-derived stromal cells prior to induction. In addition, following stimulation with high-concentration potassium solution, fluorescence intensity increased. These experimental findings suggested that neurons differentiated from adipose-derived stromal cells and expressed mature K^+ channels. In addition, following stimulation with high potassium solution, the membrane potential depolarized and fired an action potential, confirming that the induced cells possessed electrophysiological functions.展开更多
β-mercaptoethanol can induce adult adipose-derived stromal cells to rapidly and efficiently differentiate into typical neuron-like cells in vitro. Immunohistochemistry showed that neuron specific enolase and neurofil...β-mercaptoethanol can induce adult adipose-derived stromal cells to rapidly and efficiently differentiate into typical neuron-like cells in vitro. Immunohistochemistry showed that neuron specific enolase and neurofilament-200 expression gradually increased with the extension of induction time, and peaked at 5 hours. By contrast, glial fibrillary acidic protein was negatively expressed at all time points. Induced cells possessed a typical Nissl body, apoptosis showing condensed chromatin in the nucleus, autophagosomes with a bilayered membrane and autolysosomes in the cytoplasm at 5 hours. TUNEL assay and immunohistochemistry and immunofluorescence demonstrated that apoptosis and caspase-3 expression increased and peaked at 8 hours. Immunohistochemistry and immunofluorescence showed that microtubuleassociated protein light chain 3 gradually increased with induction and reached a peak at 5 hours These results indicate that autophagy played an important role in protecting cells during adult adipose-derived stromal cells differentiation into neuron-like cells in vitro.展开更多
AIM:To investigate the impact of adipose-derived mesenchymal stem cells(ADSCs) on cell viability and extracellular matrix(ECM) synthesis of corneal stromal cells(CSCs). METHODS:ADSCs and CSCs were obtained fro...AIM:To investigate the impact of adipose-derived mesenchymal stem cells(ADSCs) on cell viability and extracellular matrix(ECM) synthesis of corneal stromal cells(CSCs). METHODS:ADSCs and CSCs were obtained from the corneas of New Zealand white rabbits and indirectly cocultured in vitro. The proliferative capacity of CSCs in the different groups was assessed by CCK-8 assays. Annexin V-fluorescein isothiocyanate(FITC)/proliferation indices(PI) assays were used to detect the apoptosis of CSCs. The expression levels of matrix metalloproteinase(MMP), such as MMP1, MMP2, MMP9, and collagens were also evaluated by Western blot. RESULTS:ADSCs significantly promoted proliferation and invasion of CSCs in the indirect co-culture assays. The co-cultural group displayed much higher ability of proliferation, especially under the co-culture conditions of ADSCs for 3d, compared with that CSCs cultured alone. The PI of CSCs in the co-culture system were increased approximately 3-8-fold compared with the control group. A significant change was observed in the proportions of cells at apoptosis(early and late) between the negative control group(6.34% and 2.06%) and the ADCSs-treated group(4.69% and 1.59%). The expression levels of MMPs were down regulated in the co-culture models. Compared with the control group, the decrease intensities of MMP-1, MMP-2 and MMP-9 in CSCs/ADSCs group were observed, 3.90-fold, 1.09-fold and 3.03-fold, respectively. However, the increase intensities of collagen type(I, II, III, IV, and V) in CSCs were observed in CSCs/ADSCs group, 3.47-fold,4.30-fold, 2.35-fold, 2.55-fold and 2.43-fold, respectively, compared to that in the control group. The expressions of aldehyde dehydrogenase and fibronectin in CSCs were upregulated in the co-culture models.CONCLUSION:ADSCs play a promotive role in CSCs' growth and invasion, which may be partially associated with MMPs decrease and collagens increase, resulting in a positive participation in the plasticity and ECM synthesis of CSCs. This provided a new insight into the extensive role of ADSCs in CSCs and a potential molecular target for corneal therapy.展开更多
The increasing prevalence of obesity is alarming because it is a risk factor for cardiovascular and metabolic diseases(such as type 2 diabetes). The occurrence of these comorbidities in obese patients can arise from w...The increasing prevalence of obesity is alarming because it is a risk factor for cardiovascular and metabolic diseases(such as type 2 diabetes). The occurrence of these comorbidities in obese patients can arise from white adipose tissue(WAT) dysfunctions, which affect metabolism, insulin sensitivity and promote local and systemic inflammation. In mammals, WAT depots at different anatomical locations(subcutaneous, preperitoneal and visceral) are highly heterogeneous in their morpho-phenotypic profiles and contribute differently to homeostasis and obesity development, depending on their ability to trigger and modulate WAT inflammation. This heterogeneity is likely due to the differential behavior of cells from each depot. Numerous studies suggest that adiposederived stem/stromal cells(ASC; referred to as adipose progenitor cells, in vivo)with depot-specific gene expression profiles and adipogenic and immunomodulatory potentials are keys for the establishment of the morphofunctional heterogeneity between WAT depots, as well as for the development of depot-specific responses to metabolic challenges. In this review, we discuss depot-specific ASC properties and how they can contribute to the pathophysiology of obesity and metabolic disorders, to provide guidance for researchers and clinicians in the development of ASC-based therapeutic approaches.展开更多
Scaffold-free techniques in the developmental tissue engineering area are designed to mimic in vivo embryonic processes with the aim of biofabricating,in vitro,tissues with more authentic properties.Cell clusters call...Scaffold-free techniques in the developmental tissue engineering area are designed to mimic in vivo embryonic processes with the aim of biofabricating,in vitro,tissues with more authentic properties.Cell clusters called spheroids are the basis for scaffold-free tissue engineering.In this review,we explore the use of spheroids from adult mesenchymal stem/stromal cells as a model in the developmental engineering area in order to mimic the developmental stages of cartilage and bone tissues.Spheroids from adult mesenchymal stromal/stem cells lineages recapitulate crucial events in bone and cartilage formation during embryogenesis,and are capable of spontaneously fusing to other spheroids,making them ideal building blocks for bone and cartilage tissue engineering.Here,we discuss data from ours and other labs on the use of adipose stromal/stem cell spheroids in chondrogenesis and osteogenesis in vitro.Overall,recent studies support the notion that spheroids are ideal"building blocks"for tissue engineering by“bottom-up”approaches,which are based on tissue assembly by advanced techniques such as three-dimensional bioprinting.Further studies on the cellular and molecular mechanisms that orchestrate spheroid fusion are now crucial to support continued development of bottom-up tissue engineering approaches such as three-dimensional bioprinting.展开更多
Background: Mesenchymal stromal cells (MSCs) have been studied intensively in regenerative medicine. Among MSCs, adipose tissue-derived stromal cells (ASCs) are relatively easy to obtain from a patient. Since ASCs are...Background: Mesenchymal stromal cells (MSCs) have been studied intensively in regenerative medicine. Among MSCs, adipose tissue-derived stromal cells (ASCs) are relatively easy to obtain from a patient. Since ASCs are ideal candidates for use in the treatment of disease states including pulmonary fibrosis, we investigated whether intravenous injection of ASCs could exert a therapeutic effect against bleomycin-induced lung injury in rats. Methods: Rats were intratracheally administered bleomycin, and one week later ASCs were isolated and cultured. Two weeks after bleomycin treatment ASCs or PBS (phosphate-buffered saline) were injected to the rats. Three or six weeks after bleomycin instillation, the total cell counts and their profile in bronchoalveolar lavage fluid (BALF) were measured, and a histological evaluation was semi-quantitatively assessed for the injured lungs, followed by cell tracing. Results: The BALF cell counts and its profiles were not significantly different in the ASCs and PBS groups. Furthermore, ASC treatment led to no significant histological effect compared with the PBS treatment. Using a fluorescent cell tracer, it was noted that the ASCs homed to the injured lung areas, but some ASCs accumulated around scars, and scarcely migrated into the fibrotic areas. Conclusions: In the present study, the intravenous administration of ASCs could not reduce the severity of bleomycin-induced lung injury in a rat model. Although the ASC counts and passage numbers were suitable, the older age and fibrotic disease stage of the rats were likely responsible for the treatment failure.展开更多
Previous studies have demonstrated that nerve cells differentiated from adipose-derived stro-mal cells after chemical induction have reduced viability;however, the underlying mechanisms remained unclear. In this study...Previous studies have demonstrated that nerve cells differentiated from adipose-derived stro-mal cells after chemical induction have reduced viability;however, the underlying mechanisms remained unclear. In this study, we induced the differentiation of adult adipose-derived stromal cells into astrocytes using chemical induction. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetra-zolium bromide assay and flow cytometry showed that, with increasing induction time, the apoptotic rate gradually increased, and the number of living cells gradually decreased. Im-munohistochemical staining demonstrated that the number of glial fibrillary acidic protein-, caspase-3- and caspase-9-positive cells gradually increased with increasing induction time. Transmission electron microscopy revealed typical signs of apoptosis after differentiation. Taken together, our results indicate that caspase-dependent apoptosis is an obstacle to the differentia-tion of adipose-derived stromal cells into astrocytes. Inhibiting apoptosis may be an important strategy for increasing the efifciency of induction.展开更多
文摘In this editorial,we comment on the paper by Muthu et al published in the recent issue of the journal.This editorial review focusses on the use of adipose-derived stem cells(ADSCs)in knee osteoarthritis treatment.We discuss the differences between the stromal vascular fraction and microfragmented adipose tissue and highlight the results of clinical studies comparing both treatments and the use of hyaluronic acid,platelet-rich plasma,and bone marrow aspirate concentrate.The use of expanded ADSCs is also discussed;moreover,concerns regarding treatment with ADSCs,particularly the heterogeneity of published studies and the need to standardize protocols to explore clinical potential is explored.
基金Supported by the Basic Science Research Program through the National Research Foundation of Korea,NRF-2021R1I1A1A01040732 and NRF-2022R1I1A1A01068652the National Research Foundation of Korea grant funded by the Korean Government,Ministry of Science and ICT,2020R1A2C2009496.
文摘BACKGROUND Osteoarthritis(OA)is the most common joint disorder,is associated with an increasing socioeconomic impact owing to the ageing population.AIM To analyze and compare the efficacy and safety of bone-marrow-derived mesenchymal stromal cells(BM-MSCs)and adipose tissue-derived MSCs(AD-MSCs)in knee OA management from published randomized controlled trials(RCTs).METHODS Independent and duplicate electronic database searches were performed,including PubMed,EMBASE,Web of Science,and Cochrane Library,until August 2021 for RCTs that analyzed the efficacy and safety of AD-MSCs and BM-MSCs in the management of knee OA.The visual analog scale(VAS)score for pain,Western Ontario McMaster Universities Osteoarthritis Index(WOMAC),Lysholm score,Tegner score,magnetic resonance observation of cartilage repair tissue score,knee osteoarthritis outcome score(KOOS),and adverse events were analyzed.Analysis was performed on the R-platform using OpenMeta(Analyst)software.Twenty-one studies,involving 936 patients,were included.Only one study compared the two MSC sources without patient randomization;hence,the results of all included studies from both sources were pooled,and a comparative critical analysis was performed.RESULTS At six months,both AD-MSCs and BM-MSCs showed significant VAS improvement(P=0.015,P=0.012);this was inconsistent at 1 year for BM-MSCs(P<0.001,P=0.539),and AD-MSCs outperformed BM-MSCs compared to controls in measures such as WOMAC(P<0.001,P=0.541),Lysholm scores(P=0.006;P=0.933),and KOOS(P=0.002;P=0.012).BM-MSC-related procedures caused significant adverse events(P=0.003)compared to AD-MSCs(P=0.673).CONCLUSION Adipose tissue is superior to bone marrow because of its safety and consistent efficacy in improving pain and functional outcomes.Future trials are urgently warranted to validate our findings and reach a consensus on the ideal source of MSCs for managing knee OA.
基金Supported by Komen for the Cure Award KG080782the American Heart Association Grant 0835434N to Kolonin MG
文摘Recruitment of stem cells and partially differentiated progenitor cells is a process which accompanies and facilitates the progression of cancer.One of the factors complicating the clinical course of cancer is obesity,a progressively widespread medical condition resulting from overgrowth of white adipose tissue(WAT),com-monly known as white fat.The mechanisms by which obesity in uences cancer risk and progression are not completely understood.Cells of WAT secret soluble molecules(adipokines) that could stimulate tumor growth,although there is no consensus on which cell populations and which adipokines are important.Recent reports suggest that WAT-derived mesenchymal stem(stromal) cells,termed adipose stem cells(ASC),may represent a cell population linking obesity and cancer.Studies in animal models demonstrate that adipokines secreted by ASC can promote tumor growth by assisting in formation of new blood vessels,a process necessary for expansion of tumor mass.Importantly,migration of ASC from WAT to tumors has been demonstrated,indicating that the tumor microenvironment in cancer may be modulated by ASC-derived trophic factors in a paracrine rather than in an endocrine manner.Here,we review possible positive and adverse implications of progenitor cell recruitment into the diseased sites with a particular emphasis on the role in cancer progression of progenitors that are expanded in obesity.
文摘Knee osteoarthritis is a degenerative condition with a significant disease burden and no disease-modifying therapy.Definitive treatment ultimately requires joint replacement.Therapies capable of regenerating cartilage could significantly reduce financial and clinical costs.The regenerative potential of mesenchymal stromal cells(MSCs)has been extensively studied in the context of knee osteoarthritis.This has yielded promising results in human studies,and is likely a product of immunomodulatory and chondroprotective biomolecules produced by MSCs in response to inflammation.Adipose-derived MSCs(ASCs)are becoming increasingly popular owing to their relative ease of isolation and high proliferative capacity.Stromal vascular fraction(SVF)and micro-fragmented adipose tissue(MFAT)are produced by the enzymatic and mechanical disruption of adipose tissue,respectively.This avoids expansion of isolated ASCs ex vivo and their composition of heterogeneous cell populations,including immune cells,may potentiate the reparative function of ASCs.In this editorial,we comment on a multicenter randomized trial regarding the efficacy of MFAT in treating knee osteoarthritis.We discuss the study’s findings in the context of emerging evidence regarding adipose-derived regenerative therapies.An underlying mechanism of action of ASCs is proposed while drawing important distinctions between the properties of isolated ASCs,SVF,and MFAT.
文摘Adipose-derived stem cells(ASCs) are mesenchymal stem cells(MSCs) that are obtained from abundant adipose tissue, adherent on plastic culture flasks, can be expanded in vitro, and have the capacity to differ-entiate into multiple cell lineages. Unlike bone marrow-derived MSCs, ASCs can be obtained from abundant adipose tissue by a minimally invasive procedure, which results in a high number of cells. Therefore, ASCs are promising for regenerating tissues and organs dam-aged by injury and diseases. This article reviews the implications of ASCs in tissue regeneration.
文摘Adipose tissue-deried stem cells( ADSCs) are adult stem cells that can be easily harvested from subcutaneous adipose tissue. Many studies have demonstrated that ADSCs differentiate into vascular endothelial cells(VECs), vascular smooth muscle cells(VSMCs), and cardiomyocytes in vitro and in vivo. However, ADSCs may fuse with tissue-resident cells and obtain the corresponding characteristics of those cells. If fusion occurs, ADSCs may express markers of VECs, VSMCs, and cardiomyocytes without direct differentiation into these cell types. ADSCs also produce a variety of paracrine factors such as vascular endothelial growth factor, hepatocyte growth factor, and insulin-like growth factor-1 that have proangiogenic and/or antiapoptotic activities. Thus, ADSCs have the potential to regenerate the cardiovascular system via direct differentiation into VECs, VSMCs, and cardiomyocytes, fusion with tissueresident cells, and the production of paracrine factors. Numerous animal studies have demonstrated the efficacy of ADSC implantation in the treatment of acute myocardial infarction(AMI), ischemic cardiomyopathy(ICM), dilated cardiomyopathy, hindlimb ischemia, and stroke. Clinical studies regarding the use of autologous ADSCs for treating patients with AMI and ICM have recently been initiated. ADSC implantation has been reported as safe and effective so far. Therefore, ADSCs appear to be useful for the treatment of cardiovascular disease. However, the tumorigenic potential of ADSCs requires careful evaluation before their safe clinical application.
基金Supported by Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Science and ICT to Y.B.K.,No.2017R1A2A2A05069417
文摘BACKGROUND Osteoarthritis(OA),a chronic age-related disease characterized by the slowly progressive destruction of articular cartilage,is one of the leading causes of disability.As a new strategy for treatment of OA,mesenchymal stem cells(MSCs)have the potential for articular cartilage regeneration.Meanwhile,thrombospondin 2(TSP2)promotes the chondrogenic differentiation of MSCs.AIM To investigate whether TSP2 induces chondrogenic differentiation of human adipose-derived MSCs(hADMSCs)and potentiates the therapeutic effects of hADMSCs in OA rabbits.METHODS We investigated the chondrogenic potential of TSP2 in hADMSCs by analyzing the expression of chondrogenic markers as well as NOTCH signaling genes in normal and TSP2 small interfering RNA(siRNA)-treated stem cells.Anterior cruciate ligament transection surgery was performed in male New Zealand white rabbits,and 8 wk later,hADMSCs(1.7×10^6 or 1.7×10^7 cells)were injected into the injured knees alone or in combination with intra-articular injection of TSP2(100 ng/knee)at 2-d intervals.OA progression was monitored by gross,radiological,and histological examinations.RESULTS In hADMSC culture,treatment with TSP2 increased the expression of chondrogenic markers(SOX9 and collagen Ⅱ)as well as NOTCH signaling genes(JAGGED1 and NOTCH3),which were inhibited by TSP2 siRNA treatment.In vivo,OA rabbits treated with hADMSCs or TSP2 alone exhibited lower degree of cartilage degeneration,osteophyte formation,and extracellular matrix loss 8 wk after cell transplantation.Notably,such cartilage damage was further alleviated by the combination of hADMSCs and TSP2.In addition,synovial inflammatory cytokines,especially tumor-necrosis factor-α,markedly decreased following the combination treatment.CONCLUSION The results indicate that TSP2 enhances chondrogenic differentiation of hADMSCs via JAGGED1/NOTCH3 signaling,and that combination therapy with hADMSCs and TSP2 exerts synergistic effects in the cartilage regeneration of OA joints.
文摘Adipose tissue is a rich, ubiquitous and easily acces-sible source for multipotent stromal/stem cells and has, therefore, several advantages compared to other sourc-es of mesenchymal stromal/stem cells. Several studies have tried to identify the origin of the stromal/stem cell population within adipose tissue in situ. This is a complicated attempt because no marker has currently been described which unambiguously identifies native adipose-derived stromal/stem cells(ASCs). Isolated and cultured ASCs are a non-uniform preparation consisting of several subsets of stem and precursor cells. Cultured ASCs are characterized by their expression of a panel of markers(and the absence of others), whereas their in vitro phenotype is dynamic. Some markers were ex-pressed de novo during culture, the expression of some markers is lost. For a long time, CD34 expression was solely used to characterize haematopoietic stem and progenitor cells, but now it has become evident that it is also a potential marker to identify an ASC subpopula-tion in situ and after a short culture time. Nevertheless, long-term cultured ASCs do not express CD34, perhaps due to the artificial environment. This review gives an update of the recently published data on the origin and phenotype of ASCs both in vivo and in vitro. In addition, the composition of ASCs(or their subpopula-tions) seems to vary between different laboratories andpreparations. This heterogeneity of ASC preparationsmay result from different reasons. One of the main problems in comparing results from different laborato-ries is the lack of a standardized isolation and culture protocol for ASCs. Since many aspects of ASCs, suchas the differential potential or the current use in clinical trials, are fully described in other recent reviews, this review further updates the more basic research issues concerning ASCs' subpopulations, heterogeneity andculture standardization.
基金the Plan Program of Shenyang Science and Technology Bureau, No. 1091161-0-00
文摘Adipose-derived stem cells and bone marrow-derived stromal stem cells were co-cultured with untreated or Aβ1-40-treated PC12 cells, or grown in supernatant derived from untreated or Aβ1-40-treated PC12 cells. Analysis by western blot and quantitative real-time PCR showed that protein levels of Nanog, Oct4, and Sox2, and mRNA levels of miR/125a/3p were decreased, while expression of insulin-like growth factor-2 and neuron specific enolase was increased. In comparison the generation of neuron specific enolase-positive cells was most successful when adipose-derived stem cells were co-cultured with Aβ1-40-treated PC12 cells. Our results demonstrate that adipose-derived stem cells and bone marrow-derived stromal stem cells exhibit trends of neuronal-like cell differentiation after co-culture with Aβ1-40-treated PC12 cells. This process may relate to a downregulation of miR-125a-3p mRNA expression and increased levels of insulin-like growth factor-2 expression.
文摘β-mercaptoethanol can induce adipose-derived stromal cells to rapidly and efficiently differentiate into neurons in vitro.However,because of the short survival time of the differentiated cells,clinical applications for this technique are limited.As such,we examined apoptosis of neurons differentiated from adipose-derived stromal cells induced with β-mercaptoethanol in vitro using terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling and transmission electron microscopy.The results revealed that the number of surviving cells decreased and apoptosis rate increased as induction time extended.Taken together,these results suggest that apoptosis occurring in the process of adipose-derived stromal cells differentiating into neurons is the main cause of cell death.However,the mechanism underlying cellular apoptosis should be researched further to develop methods of controlling apoptosis for clinical applications.
文摘β-mercaptoethanol induces in vitro adult adipose-derived stromal cells (ADSCs) to differentiate into neurons. However, the ultrastructural features of the differentiated neuronal-like cells remain unknown. In the present study, inverted phase contrast microscopy was utilized to observe β-mercaptoethanol-induced differentiation of neuronal-like cells from human ADSCs, and immunocytochemistry and real-time polymerase chain reaction were employed to detect expression of a neural stem cells marker (nestin), a neuronal marker (neuron-specific enolase), and a glial marker (glial fibrillary acidic protein). In addition, ultrastructure of neuronal-like cells was observed by transmission election microscopy. Results revealed highest expression rate of nestin and neuron-specific enolase at 3 and 5 hours following induced differentiation; cells in the 5-hour induction group exhibited a neuronal-specific structure, i.e., Nissl bodies. However, when induction solution was replaced by complete culture medium after 8-hour induction, the differentiated cells reverted to the fibroblast-like morphology from day 1. These results demonstrate that β-mercaptoethanol-induced ADSCs induced differentiation into neural stem cells, followed by morphology of neuronal-like cells. However, this differentiation state was not stable.
文摘The quantity and survival time of astrocytes,which were differentiated from adult adipose-derived stromal cells after exposure to an inducer containing 3-isobutyl-1-methylxanthine,have thus far been unsatisfactory.The present study investigated the growth and differentiation characteristics of induced astrocytes by observing their growth curves.After induction for 48 hours with an inducer containing 0.5% ethanol,some adult adult adipose-derived stromal cells displayed typical astrocytic morphology.The cell quantity gradually decreased with prolonged induction time.Nestin,glial fibrillary acidic protein,and S-100 expression reached peak levels at 14 days,but neuron-specific enolase was not expressed.These results suggest that the induced astrocytes reached their peak at 14 days.Further optimization of the culture environment may yield mature astrocytes with normal functions,in greater quantity,and prolonged survival time.
文摘β-mercaptoethanol was used to induce in vitro neuronal differentiation of adipose-derived stromal cells. Within an 8-hour period post-differentiation, the induced cells exhibited typical neuronal morphology, and expression of microtubule-associated protein 2 and neuron-specific enolase, which are markers of mature neurons, reached a peak at 5 hours. Specific organelle Nissl bodies of neurons were observed under transmission electron microscopy. Results of membrane potential showed that fluorescence intensity of cells was greater after 5 hours than adipose-derived stromal cells prior to induction. In addition, following stimulation with high-concentration potassium solution, fluorescence intensity increased. These experimental findings suggested that neurons differentiated from adipose-derived stromal cells and expressed mature K^+ channels. In addition, following stimulation with high potassium solution, the membrane potential depolarized and fired an action potential, confirming that the induced cells possessed electrophysiological functions.
文摘β-mercaptoethanol can induce adult adipose-derived stromal cells to rapidly and efficiently differentiate into typical neuron-like cells in vitro. Immunohistochemistry showed that neuron specific enolase and neurofilament-200 expression gradually increased with the extension of induction time, and peaked at 5 hours. By contrast, glial fibrillary acidic protein was negatively expressed at all time points. Induced cells possessed a typical Nissl body, apoptosis showing condensed chromatin in the nucleus, autophagosomes with a bilayered membrane and autolysosomes in the cytoplasm at 5 hours. TUNEL assay and immunohistochemistry and immunofluorescence demonstrated that apoptosis and caspase-3 expression increased and peaked at 8 hours. Immunohistochemistry and immunofluorescence showed that microtubuleassociated protein light chain 3 gradually increased with induction and reached a peak at 5 hours These results indicate that autophagy played an important role in protecting cells during adult adipose-derived stromal cells differentiation into neuron-like cells in vitro.
基金Supported by Important Subject Fund of Science Technology Department of Zhejiang Province(No.2013C03048-1)
文摘AIM:To investigate the impact of adipose-derived mesenchymal stem cells(ADSCs) on cell viability and extracellular matrix(ECM) synthesis of corneal stromal cells(CSCs). METHODS:ADSCs and CSCs were obtained from the corneas of New Zealand white rabbits and indirectly cocultured in vitro. The proliferative capacity of CSCs in the different groups was assessed by CCK-8 assays. Annexin V-fluorescein isothiocyanate(FITC)/proliferation indices(PI) assays were used to detect the apoptosis of CSCs. The expression levels of matrix metalloproteinase(MMP), such as MMP1, MMP2, MMP9, and collagens were also evaluated by Western blot. RESULTS:ADSCs significantly promoted proliferation and invasion of CSCs in the indirect co-culture assays. The co-cultural group displayed much higher ability of proliferation, especially under the co-culture conditions of ADSCs for 3d, compared with that CSCs cultured alone. The PI of CSCs in the co-culture system were increased approximately 3-8-fold compared with the control group. A significant change was observed in the proportions of cells at apoptosis(early and late) between the negative control group(6.34% and 2.06%) and the ADCSs-treated group(4.69% and 1.59%). The expression levels of MMPs were down regulated in the co-culture models. Compared with the control group, the decrease intensities of MMP-1, MMP-2 and MMP-9 in CSCs/ADSCs group were observed, 3.90-fold, 1.09-fold and 3.03-fold, respectively. However, the increase intensities of collagen type(I, II, III, IV, and V) in CSCs were observed in CSCs/ADSCs group, 3.47-fold,4.30-fold, 2.35-fold, 2.55-fold and 2.43-fold, respectively, compared to that in the control group. The expressions of aldehyde dehydrogenase and fibronectin in CSCs were upregulated in the co-culture models.CONCLUSION:ADSCs play a promotive role in CSCs' growth and invasion, which may be partially associated with MMPs decrease and collagens increase, resulting in a positive participation in the plasticity and ECM synthesis of CSCs. This provided a new insight into the extensive role of ADSCs in CSCs and a potential molecular target for corneal therapy.
基金the National Council for Scientific and Technological Development (CNPq)the Carlos Chagas Filho Foundation for Research Support of the State of Rio de Janeiro (FAPERJ)the Coordination of High Education Personnel Improvement (CAPES) for financial support
文摘The increasing prevalence of obesity is alarming because it is a risk factor for cardiovascular and metabolic diseases(such as type 2 diabetes). The occurrence of these comorbidities in obese patients can arise from white adipose tissue(WAT) dysfunctions, which affect metabolism, insulin sensitivity and promote local and systemic inflammation. In mammals, WAT depots at different anatomical locations(subcutaneous, preperitoneal and visceral) are highly heterogeneous in their morpho-phenotypic profiles and contribute differently to homeostasis and obesity development, depending on their ability to trigger and modulate WAT inflammation. This heterogeneity is likely due to the differential behavior of cells from each depot. Numerous studies suggest that adiposederived stem/stromal cells(ASC; referred to as adipose progenitor cells, in vivo)with depot-specific gene expression profiles and adipogenic and immunomodulatory potentials are keys for the establishment of the morphofunctional heterogeneity between WAT depots, as well as for the development of depot-specific responses to metabolic challenges. In this review, we discuss depot-specific ASC properties and how they can contribute to the pathophysiology of obesity and metabolic disorders, to provide guidance for researchers and clinicians in the development of ASC-based therapeutic approaches.
基金the Coordination for the Improvement of Higher Education Personnel(CAPES),No.88882.366181/2019-01the Carlos Chagas Filho Foundation for Research Support of the State of Rio de Janeiro(FAPERJ),No.E-26/202.682/2018National Council for Scientific and Technological Development(CNPq),No.467513/2014-7
文摘Scaffold-free techniques in the developmental tissue engineering area are designed to mimic in vivo embryonic processes with the aim of biofabricating,in vitro,tissues with more authentic properties.Cell clusters called spheroids are the basis for scaffold-free tissue engineering.In this review,we explore the use of spheroids from adult mesenchymal stem/stromal cells as a model in the developmental engineering area in order to mimic the developmental stages of cartilage and bone tissues.Spheroids from adult mesenchymal stromal/stem cells lineages recapitulate crucial events in bone and cartilage formation during embryogenesis,and are capable of spontaneously fusing to other spheroids,making them ideal building blocks for bone and cartilage tissue engineering.Here,we discuss data from ours and other labs on the use of adipose stromal/stem cell spheroids in chondrogenesis and osteogenesis in vitro.Overall,recent studies support the notion that spheroids are ideal"building blocks"for tissue engineering by“bottom-up”approaches,which are based on tissue assembly by advanced techniques such as three-dimensional bioprinting.Further studies on the cellular and molecular mechanisms that orchestrate spheroid fusion are now crucial to support continued development of bottom-up tissue engineering approaches such as three-dimensional bioprinting.
文摘Background: Mesenchymal stromal cells (MSCs) have been studied intensively in regenerative medicine. Among MSCs, adipose tissue-derived stromal cells (ASCs) are relatively easy to obtain from a patient. Since ASCs are ideal candidates for use in the treatment of disease states including pulmonary fibrosis, we investigated whether intravenous injection of ASCs could exert a therapeutic effect against bleomycin-induced lung injury in rats. Methods: Rats were intratracheally administered bleomycin, and one week later ASCs were isolated and cultured. Two weeks after bleomycin treatment ASCs or PBS (phosphate-buffered saline) were injected to the rats. Three or six weeks after bleomycin instillation, the total cell counts and their profile in bronchoalveolar lavage fluid (BALF) were measured, and a histological evaluation was semi-quantitatively assessed for the injured lungs, followed by cell tracing. Results: The BALF cell counts and its profiles were not significantly different in the ASCs and PBS groups. Furthermore, ASC treatment led to no significant histological effect compared with the PBS treatment. Using a fluorescent cell tracer, it was noted that the ASCs homed to the injured lung areas, but some ASCs accumulated around scars, and scarcely migrated into the fibrotic areas. Conclusions: In the present study, the intravenous administration of ASCs could not reduce the severity of bleomycin-induced lung injury in a rat model. Although the ASC counts and passage numbers were suitable, the older age and fibrotic disease stage of the rats were likely responsible for the treatment failure.
文摘Previous studies have demonstrated that nerve cells differentiated from adipose-derived stro-mal cells after chemical induction have reduced viability;however, the underlying mechanisms remained unclear. In this study, we induced the differentiation of adult adipose-derived stromal cells into astrocytes using chemical induction. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetra-zolium bromide assay and flow cytometry showed that, with increasing induction time, the apoptotic rate gradually increased, and the number of living cells gradually decreased. Im-munohistochemical staining demonstrated that the number of glial fibrillary acidic protein-, caspase-3- and caspase-9-positive cells gradually increased with increasing induction time. Transmission electron microscopy revealed typical signs of apoptosis after differentiation. Taken together, our results indicate that caspase-dependent apoptosis is an obstacle to the differentia-tion of adipose-derived stromal cells into astrocytes. Inhibiting apoptosis may be an important strategy for increasing the efifciency of induction.