期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
On the adjacent vertex-distinguishing acyclic edge coloring of some graphs 被引量:5
1
作者 SHIU Wai Chee CHAN Wai Hong +1 位作者 ZHANG Zhong-fu BIAN Liang 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2011年第4期439-452,共14页
A proper edge coloring of a graph G is called adjacent vertex-distinguishing acyclic edge coloring if there is no 2-colored cycle in G and the coloring set of edges incident with u is not equal to the coloring set of ... A proper edge coloring of a graph G is called adjacent vertex-distinguishing acyclic edge coloring if there is no 2-colored cycle in G and the coloring set of edges incident with u is not equal to the coloring set of edges incident with v, where uv∈ E(G). The adjacent vertex distinguishing acyclic edge chromatic number of G, denoted by X'Aa(G), is the minimal number of colors in an adjacent vertex distinguishing acyclic edge coloring of G. If a graph G has an adjacent vertex distinguishing acyclic edge coloring, then G is called adjacent vertex distinguishing acyclic. In this paper, we obtain adjacent vertex-distinguishing acyclic edge coloring of some graphs and put forward some conjectures. 展开更多
关键词 adjacent strong edge coloring adjacent vertex-distinguishing acyclic edge coloring.
下载PDF
On the Adjacent Strong Edge Coloring of Outer Plane Graphs 被引量:4
2
作者 刘林忠 张忠辅 王建方 《Journal of Mathematical Research and Exposition》 CSCD 北大核心 2005年第2期255-266,共12页
A k-adjacent strong edge coloring of graph G(V, E) is defined as a proper k-edge coloring f of graph G(V, E) such that f[u] ≠ f[v] for every uv ∈ E(G), where f[u] = {f(uw)|uw ∈ E(G)} and f(uw) denotes the color of ... A k-adjacent strong edge coloring of graph G(V, E) is defined as a proper k-edge coloring f of graph G(V, E) such that f[u] ≠ f[v] for every uv ∈ E(G), where f[u] = {f(uw)|uw ∈ E(G)} and f(uw) denotes the color of uw, and the adjacent strong edge chromatic number is defined as x'as(G) = min{k| there is a k-adjacent strong edge coloring of G}. In this paper, it has been proved that △ ≤ x'as(G) ≤ △ + 1 for outer plane graphs with △(G) ≥ 5, and X'as(G) = △ + 1 if and only if there exist adjacent vertices with maximum degree. 展开更多
关键词 outer plane graph vertex distinguishing edge coloring adjacent strong edge coloring.
下载PDF
On the Adjacent Strong Edge Coloring of Halin Graphs 被引量:2
3
作者 刘林忠 李引珍 +1 位作者 张忠辅 王建方 《Journal of Mathematical Research and Exposition》 CSCD 北大核心 2003年第2期241-246,共6页
A proper k-edge coloring f of graph G(V, E) is said to be a k:-adjacent strong edge coloring of graph G(V,E) iff every uv∈E(G) satisfy f[u]≠f/[v], where f[u] = {f(uw)|uw ∈E(G)} then f is called k-adjacent strong ed... A proper k-edge coloring f of graph G(V, E) is said to be a k:-adjacent strong edge coloring of graph G(V,E) iff every uv∈E(G) satisfy f[u]≠f/[v], where f[u] = {f(uw)|uw ∈E(G)} then f is called k-adjacent strong edge coloring of G, is abbreviated k-ASEC: and x'as(G) = min{k|k-ASEC of G} is called the adjacent strong edge chromatic number. In this paper, we study the x'as(G) of Halin graphs with △A(G)≥5. 展开更多
关键词 adjacent strong edge coloring adjacent strong edge chromatics number Halin graph
下载PDF
Adjacent Strong Edge Chromatic Number of Series-Parallel Graphs 被引量:1
4
作者 王淑栋 庞善臣 许进 《Journal of Mathematical Research and Exposition》 CSCD 北大核心 2005年第2期267-278,共12页
In this paper, we will study the adjacent strong edge coloring of series-parallel graphs, and prove that series-parallel graphs of △(G) = 3 and 4 satisfy the conjecture of adjacent strong edge coloring using the doub... In this paper, we will study the adjacent strong edge coloring of series-parallel graphs, and prove that series-parallel graphs of △(G) = 3 and 4 satisfy the conjecture of adjacent strong edge coloring using the double inductions and the method of exchanging colors from the aspect of configuration property. For series-parallel graphs of △(G) ≥ 5, △(G) ≤ x'as(G) ≤ △(G) + 1. Moreover, x'as(G) = △(G) + 1 if and only if it has two adjacent vertices of maximum degree, where △(G) and X'as(G) denote the maximum degree and the adjacent strong edge chromatic number of graph G respectively. 展开更多
关键词 series-parallel graph adjacent strong edge coloring adjacent strong edge chromatic number.
下载PDF
An Upper Bound for the Adjacent Vertex Distinguishing Acyclic Edge Chromatic Number of a Graph 被引量:15
5
作者 Xin-sheng Liu Ming-qiang An Yang Gao 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2009年第1期137-140,共4页
A proper k-edge coloring of a graph G is called adjacent vertex distinguishing acyclic edge coloring if there is no 2-colored cycle in G and the color set of edges incident to u is not equal to the color set of edges ... A proper k-edge coloring of a graph G is called adjacent vertex distinguishing acyclic edge coloring if there is no 2-colored cycle in G and the color set of edges incident to u is not equal to the color set of edges incident to v, where uv ∈E(G). The adjacent vertex distinguishing acyclic edge chromatic number of G, denoted by χ'αα(G), is the minimal number of colors in an adjacent vertex distinguishing acyclic edge coloring of G. In this paper we prove that if G(V, E) is a graph with no isolated edges, then χ'αα(G)≤32△. 展开更多
关键词 adjacent strong edge coloring adjacent vertex distinguishing acyclic edge coloring adjacent vertexdistinguishing acyclic edge chromatic number the LovNsz local lemma
原文传递
Adjacent strong edge colorings and total colorings of regular graphs 被引量:10
6
作者 WOODALL Douglas R 《Science China Mathematics》 SCIE 2009年第5期973-980,共8页
It is conjectured that X as ′ (G) = X t (G) for every k-regular graph G with no C 5 component (k ? 2). This conjecture is shown to be true for many classes of graphs, including: graphs of type 1; 2-regular, 3-regular... It is conjectured that X as ′ (G) = X t (G) for every k-regular graph G with no C 5 component (k ? 2). This conjecture is shown to be true for many classes of graphs, including: graphs of type 1; 2-regular, 3-regular and (|V(G)| - 2)-regular graphs; bipartite graphs; balanced complete multipartite graphs; k-cubes; and joins of two matchings or cycles. 展开更多
关键词 GRAPH total coloring adjacent strong edge coloring 05C15 68R10
原文传递
A Note on Adjacent Strong Edge Coloring of K(n,m) 被引量:13
7
作者 Jing-wen Li Zhong-fu Zhang +1 位作者 Xiang-en Chen Yi-rong Sun 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2006年第2期273-276,共4页
In this paper, we prove that the adjacent strong edge chromatic number of a graph K(n,m) is n + 1, with n ≥ 2, m ≥ 1.
关键词 COLORING edge coloring adjacent strong edge coloring
原文传递
On the Adjacent Vertex-distinguishing Equitable Edge Coloring of Graphs 被引量:3
8
作者 Jing-wen LI Cong WANG Zhi-wen WANG 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2013年第3期615-622,共8页
Let G(V, E) be a graph. A k-adjacent vertex-distinguishing equatable edge coloring of G, k-AVEEC for short, is a proper edge coloring f if (1) C(u)≠C(v) for uv ∈ E(G), where C(u) = {f(uv)|uv ∈ E}, a... Let G(V, E) be a graph. A k-adjacent vertex-distinguishing equatable edge coloring of G, k-AVEEC for short, is a proper edge coloring f if (1) C(u)≠C(v) for uv ∈ E(G), where C(u) = {f(uv)|uv ∈ E}, and (2) for any i, j = 1, 2,… k, we have ||Ei| |Ej|| ≤ 1, where Ei = {e|e ∈ E(G) and f(e) = i}. χáve (G) = min{k| there exists a k-AVEEC of G} is called the adjacent vertex-distinguishing equitable edge chromatic number of G. In this paper, we obtain the χ áve (G) of some special graphs and present a conjecture. 展开更多
关键词 GRAPH adjacent vertex-distinguishing edge coloring adjacent vertex-distinguishing equitable edge coloring
原文传递
GRAPH COLORING BASED CHANNEL ASSIGNMENT FRAMEWORK FOR RURAL WIRELESS MESH NETWORKS
9
作者 Zuo Chao Xiong Cong +1 位作者 Zhang Han Fang Chang 《Journal of Electronics(China)》 2013年第5期436-446,共11页
IEEE 802.11 based wireless mesh networks with directional antennas are expected to be a new promising technology and an economic approach for providing wireless broadband services in rural areas.In this paper,we discu... IEEE 802.11 based wireless mesh networks with directional antennas are expected to be a new promising technology and an economic approach for providing wireless broadband services in rural areas.In this paper,we discuss interference models and address how they can affect the design of channel assignment in rural mesh networks.We present a new channel assignment framework based on graph coloring for rural wireless mesh networks.The goal of the framework is to allow synchronously transmitting or receiving data from multiple neighbor links at the same time,and continuously doing full-duplex data transfer on every link,creating an efficient rural mesh network without interference.Channel assignment is shown to be NP-hard.We frame this channel allocation problem in terms of Adjacent Vertex Distinguishing Edge Coloring(AVDEC).Detailed assignment results on grid topology are presented and discussed.Furthermore,we design an algorithm.Finally,we evaluate the performance of the proposed algorithm through extensive simulations and show the algorithm is effective to the regular grid topologies,and the number of colors used by the algorithm is upper bounded by+1.Hence the algorithm guarantees that the number of channels available in standards such as IEEE802.11a is sufficient to have a valid AVDEC for many grid topologies.We also evaluate the proposed algorithm for arbitrary graphs.The algorithm provides a lower upper bound on the minimum number of channels to the AVDEC index channel assignment problem. 展开更多
关键词 IEEE 802.11 Rural mesh networks Channel assignment adjacent Vertex Distinguishing edge Coloring(AVDEC
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部