期刊文献+
共找到282篇文章
< 1 2 15 >
每页显示 20 50 100
Adjacent vertex-distinguishing total colorings of K_s∨K_t
1
作者 冯云 林文松 《Journal of Southeast University(English Edition)》 EI CAS 2013年第2期226-228,共3页
Let G be a simple graph and f be a proper total kcoloring of G. The color set of each vertex v of G is the set of colors appearing on v and the edges incident to v. The coloring f is said to be an adjacent vertex-dist... Let G be a simple graph and f be a proper total kcoloring of G. The color set of each vertex v of G is the set of colors appearing on v and the edges incident to v. The coloring f is said to be an adjacent vertex-distinguishing total coloring if the color sets of any two adjacent vertices are distinct. The minimum k for which such a coloring of G exists is called the adjacent vertex-distinguishing total chromatic number of G. The join graph of two vertex-disjoint graphs is the graph union of these two graphs together with all the edges that connect the vertices of one graph with the vertices of the other. The adjacent vertex-distinguishing total chromatic numbers of the join graphs of an empty graph of order s and a complete graph of order t are determined. 展开更多
关键词 adjacent vertex-distinguishing total coloring adjacent vertex-distinguishing total chromatic number joingraph
下载PDF
Adjacent Vertex-distinguishing E-total Coloring on Some Join Graphs Cm V Gn 被引量:3
2
作者 WANG Ji-shun 《Chinese Quarterly Journal of Mathematics》 CSCD 2012年第3期328-336,共9页
Let G(V, E) be a simple connected graph and k be positive integers. A mapping f from V∪E to {1, 2, ··· , k} is called an adjacent vertex-distinguishing E-total coloring of G(abbreviated to k-AVDETC), i... Let G(V, E) be a simple connected graph and k be positive integers. A mapping f from V∪E to {1, 2, ··· , k} is called an adjacent vertex-distinguishing E-total coloring of G(abbreviated to k-AVDETC), if for uv ∈ E(G), we have f(u) ≠ f(v), f(u) ≠ f(uv), f(v) ≠ f(uv), C(u) ≠C(v), where C(u) = {f(u)}∪{f(uv)|uv ∈ E(G)}. The least number of k colors required for which G admits a k-coloring is called the adjacent vertex-distinguishing E-total chromatic number of G is denoted by x^e_(at) (G). In this paper, the adjacent vertexdistinguishing E-total colorings of some join graphs C_m∨G_n are obtained, where G_n is one of a star S_n , a fan F_n , a wheel W_n and a complete graph K_n . As a consequence, the adjacent vertex-distinguishing E-total chromatic numbers of C_m∨G_n are confirmed. 展开更多
关键词 join graph adjacent vertex-distinguishing E-total coloring adjacent vertexdistinguishing E-total chromatic number
下载PDF
Adjacent Strong Edge Chromatic Number of Series-Parallel Graphs 被引量:1
3
作者 王淑栋 庞善臣 许进 《Journal of Mathematical Research and Exposition》 CSCD 北大核心 2005年第2期267-278,共12页
In this paper, we will study the adjacent strong edge coloring of series-parallel graphs, and prove that series-parallel graphs of △(G) = 3 and 4 satisfy the conjecture of adjacent strong edge coloring using the doub... In this paper, we will study the adjacent strong edge coloring of series-parallel graphs, and prove that series-parallel graphs of △(G) = 3 and 4 satisfy the conjecture of adjacent strong edge coloring using the double inductions and the method of exchanging colors from the aspect of configuration property. For series-parallel graphs of △(G) ≥ 5, △(G) ≤ x'as(G) ≤ △(G) + 1. Moreover, x'as(G) = △(G) + 1 if and only if it has two adjacent vertices of maximum degree, where △(G) and X'as(G) denote the maximum degree and the adjacent strong edge chromatic number of graph G respectively. 展开更多
关键词 series-parallel graph adjacent strong edge coloring adjacent strong edge chromatic number.
下载PDF
An Upper Bound for the Adjacent Vertex Distinguishing Acyclic Edge Chromatic Number of a Graph 被引量:15
4
作者 Xin-sheng Liu Ming-qiang An Yang Gao 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2009年第1期137-140,共4页
A proper k-edge coloring of a graph G is called adjacent vertex distinguishing acyclic edge coloring if there is no 2-colored cycle in G and the color set of edges incident to u is not equal to the color set of edges ... A proper k-edge coloring of a graph G is called adjacent vertex distinguishing acyclic edge coloring if there is no 2-colored cycle in G and the color set of edges incident to u is not equal to the color set of edges incident to v, where uv ∈E(G). The adjacent vertex distinguishing acyclic edge chromatic number of G, denoted by χ'αα(G), is the minimal number of colors in an adjacent vertex distinguishing acyclic edge coloring of G. In this paper we prove that if G(V, E) is a graph with no isolated edges, then χ'αα(G)≤32△. 展开更多
关键词 adjacent strong edge coloring adjacent vertex distinguishing acyclic edge coloring adjacent vertexdistinguishing acyclic edge chromatic number the LovNsz local lemma
原文传递
An Upper Bound for the Adjacent Vertex-Distinguishing Total Chromatic Number of a Graph 被引量:17
5
作者 LIU Xin Sheng AN Ming Qiang GAO Yang 《Journal of Mathematical Research and Exposition》 CSCD 2009年第2期343-348,共6页
Let G = (V, E) be a simple connected graph, and |V(G)| ≥ 2. Let f be a mapping from V(G) ∪ E(G) to {1,2…, k}. If arbitary uv ∈ E(G),f(u) ≠ f(v),f(u) ≠ f(uv),f(v) ≠ f(uv); arbitary uv, uw... Let G = (V, E) be a simple connected graph, and |V(G)| ≥ 2. Let f be a mapping from V(G) ∪ E(G) to {1,2…, k}. If arbitary uv ∈ E(G),f(u) ≠ f(v),f(u) ≠ f(uv),f(v) ≠ f(uv); arbitary uv, uw ∈ E(G)(v ≠ w), f(uv) ≠ f(uw);arbitary uv ∈ E(G) and u ≠ v, C(u) ≠ C(v), whereC(u)={f(u)}∪{f(uv)|uv∈E(G)}.Then f is called a k-adjacent-vertex-distinguishing-proper-total coloring of the graph G(k-AVDTC of G for short). The number min{k|k-AVDTC of G} is called the adjacent vertex-distinguishing total chromatic number and denoted by χat(G). In this paper we prove that if △(G) is at least a particular constant and δ ≥32√△ln△, then χat(G) ≤ △(G) + 10^26 + 2√△ln△. 展开更多
关键词 total coloring adjacent vertex distinguishing total coloring adjacent vertex distinguishing total chromatic number Lovasz local lemma.
下载PDF
A Note on Adjacent-Vertex-Distinguishing Total Chromatic Numbers for P_m × P_n,P_m × C_n and C_m × C_n 被引量:1
6
作者 陈祥恩 张忠辅 孙宜蓉 《Journal of Mathematical Research and Exposition》 CSCD 北大核心 2008年第4期789-798,共10页
Let G be a simple graph. Let f be a mapping from V (G) ∪ E(G) to {1,2,...,k}. Let Cf(v) = {f(v)} ∪ {f(vw)|w ∈ V (G),vw ∈ E(G)} for every v ∈ V (G). If f is a k-proper- total-coloring, and for u,v ∈ V (G),uv ∈ E... Let G be a simple graph. Let f be a mapping from V (G) ∪ E(G) to {1,2,...,k}. Let Cf(v) = {f(v)} ∪ {f(vw)|w ∈ V (G),vw ∈ E(G)} for every v ∈ V (G). If f is a k-proper- total-coloring, and for u,v ∈ V (G),uv ∈ E(G), we have Cf(u) = Cf(v), then f is called a k- adjacent-vertex-distinguishing total coloring (k-AV DTC for short). Let χat(G) = min{k|G have a k-adjacent-vertex-distinguishing total coloring}. Then χat(G) is called the adjacent-vertex- distinguishing total chromatic number (AV DTC number for short)... 展开更多
关键词 total coloring adjacent-vertex-distinguishing total coloring adjacent-vertex-distinguishing total chromatic number.
下载PDF
关于C_m×C_(5n)的全色数和邻强边色数 被引量:24
7
作者 张婷 李沐春 +2 位作者 徐保根 安常胜 左超 《兰州交通大学学报》 CAS 2007年第6期124-126,139,共4页
设G是一个简单图,k为正整数,V(G)∪E(G)到{1,2,…,k}的一个映射f满足:对于任意的uv∈E(G)有f(u)≠f(v),f(u)≠f(uv),f(v)≠f(uv);任意的uv,vw∈E(G),u≠w,有f(uv)≠f(uw),则称f为G的k-全染色,简记为k-TC,并称ΧT(G)=min{k|G存在k-TC}为... 设G是一个简单图,k为正整数,V(G)∪E(G)到{1,2,…,k}的一个映射f满足:对于任意的uv∈E(G)有f(u)≠f(v),f(u)≠f(uv),f(v)≠f(uv);任意的uv,vw∈E(G),u≠w,有f(uv)≠f(uw),则称f为G的k-全染色,简记为k-TC,并称ΧT(G)=min{k|G存在k-TC}为G的全色数.证明了圈Cm与圈C5n的笛卡尔积图的全色数和邻强边色数都为5. 展开更多
关键词 笛卡尔积图 全色数 邻强边色数
下载PDF
关于几类特殊图的Mycielski图的邻点可区别全色数(英文) 被引量:13
8
作者 陈祥恩 张忠辅 +1 位作者 晏静之 张贵仓 《兰州大学学报(自然科学版)》 CAS CSCD 北大核心 2005年第2期117-122,共6页
设G是一个简单图,f是一个从V(G)∪E(G)到{1,2,…,k}的映射.对每个v∈V(G),令Cf(v)={f(v)}∪{f(vw)|w∈V(G),vw∈E(G)}如果f是G的正常全染色且(?)u,v∈V(G),一旦uv∈E(G),就有Cf(u)≠Cf(v),那么称f为G的邻点可区别全染色(简称为k-AVDTC).... 设G是一个简单图,f是一个从V(G)∪E(G)到{1,2,…,k}的映射.对每个v∈V(G),令Cf(v)={f(v)}∪{f(vw)|w∈V(G),vw∈E(G)}如果f是G的正常全染色且(?)u,v∈V(G),一旦uv∈E(G),就有Cf(u)≠Cf(v),那么称f为G的邻点可区别全染色(简称为k-AVDTC).设Xat(G)=min{k|G存在k-AVDTC},则称Xat(G)为G的邻点可区别全色数.给出了路、圈、完全图、完全二分图、星、扇和轮的Mycielski图的邻点可区别全色数. 展开更多
关键词 全染色 邻点可区别全染色 邻点可区别全色数
下载PDF
Δ(G)≤4的外平面图的邻强边色数 被引量:14
9
作者 刘林忠 张忠辅 王建方 《高校应用数学学报(A辑)》 CSCD 北大核心 2000年第2期139-146,共8页
研究了Δ(G)≤4的外平面图的邻强边染色,证明了Δ(G)≤χ′as(G)≤Δ(G)+1,且χ′as(G)=Δ(G)+1当且仅当存在两个最大度点相邻,其中Δ(G)和χ′as(G)分别表示图G的最大度和邻强边色数,并且提出了如下猜想:如果G是一个|V(G)|≥3(G≠C5)... 研究了Δ(G)≤4的外平面图的邻强边染色,证明了Δ(G)≤χ′as(G)≤Δ(G)+1,且χ′as(G)=Δ(G)+1当且仅当存在两个最大度点相邻,其中Δ(G)和χ′as(G)分别表示图G的最大度和邻强边色数,并且提出了如下猜想:如果G是一个|V(G)|≥3(G≠C5)的2-连通图,则Δ(G)≤χ′as(G)≤Δ(G) 展开更多
关键词 外平面图 邻强边染色 邻强边色数 着色
下载PDF
C_m·F_n的邻点可区别边色数 被引量:7
10
作者 李敬文 刘君 +3 位作者 包世堂 任志国 赵传成 张忠辅 《兰州交通大学学报》 CAS 2004年第4期128-130,共3页
Fn表示阶为n+1的扇,当m个Fn的扇心连成圈时,用Cm·Fn表示.设Cm=u1u2…unv1,V(Cm·Fn)={ui|i=1,2,…,m}∪{vij|i=1,2,…,m;j=1,2,…,n},E(Cm·Fn)=E(Cm)∪{uivij|i=1,2,…,m;j=1,2,…,n}∪{vijvi(j+1)|i=1,2,…,m;j=1,2,…,n... Fn表示阶为n+1的扇,当m个Fn的扇心连成圈时,用Cm·Fn表示.设Cm=u1u2…unv1,V(Cm·Fn)={ui|i=1,2,…,m}∪{vij|i=1,2,…,m;j=1,2,…,n},E(Cm·Fn)=E(Cm)∪{uivij|i=1,2,…,m;j=1,2,…,n}∪{vijvi(j+1)|i=1,2,…,m;j=1,2,…,n-1}.研究Cm·Fn的邻点可区别的边色数. 展开更多
关键词 邻点可区别的边色数
下载PDF
若干联图的邻点可区别I-全染色 被引量:9
11
作者 张婷 朱恩强 +1 位作者 刘晓娜 赵双柱 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2017年第2期267-272,共6页
利用函数构造法和数学归纳法,考虑图P_m∨S_n,F_m∨W_n和W_m∨W_n的邻点可区别I-全染色,给出了它们邻点可区别I-全色数.
关键词 联图 I-全染色 邻点可区别I-全染色 邻点可区别I-全色数
下载PDF
若干路的冠图的邻点可区别V-全染色 被引量:9
12
作者 李沐春 王双莉 +1 位作者 张伟东 王立丽 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第6期97-99,共3页
根据路与完全图(星、扇、轮、路、圈)构造的冠图的结构性质,应用分析和构造函数法研究了邻点可区别V-全染色,得到了路与完全图(星、扇、轮、路、圈)构造的冠图的邻点可区别V-全色数.
关键词 冠图 邻点可区别V-全染色 邻点可区别V-全色数
下载PDF
若干图类的邻强边染色 被引量:7
13
作者 王淑栋 李崇明 +1 位作者 许进 庞善臣 《数学研究》 CSCD 2002年第4期412-417,共6页
研究了若干图类的邻强边染色 .利用在图中添加辅助点和边的方法 ,构造性的证明了对于完全图 Kn和路 Lm 的笛卡尔积图 Kn× Lm,有χ′as(Kn× Lm) =△ (Kn× Lm) +1 ,其中△ (Kn× Lm)和χ′as(Kn× Lm)分别表示图 K... 研究了若干图类的邻强边染色 .利用在图中添加辅助点和边的方法 ,构造性的证明了对于完全图 Kn和路 Lm 的笛卡尔积图 Kn× Lm,有χ′as(Kn× Lm) =△ (Kn× Lm) +1 ,其中△ (Kn× Lm)和χ′as(Kn× Lm)分别表示图 Kn× Lm的最大度和邻强边色数 .同理验证了 n阶完全图 Kn的广义图 K(n,m)满足邻强边染色猜想 . 展开更多
关键词 完全图 广义图 笛卡尔积图 邻强边染色 邻强边色数
下载PDF
广义Petersen图G(n,k)的邻强边染色 被引量:20
14
作者 田双亮 张忠辅 《兰州大学学报(自然科学版)》 CAS CSCD 北大核心 2005年第4期100-101,共2页
研究了若干广义Petersen图G(n,k)的邻强边染色,证明了若n≡0(mod 4),k≠0(mod 4), 则X'as(G(n,k))=4.
关键词 广义PETERSEN图 邻强边染色 邻强边色数
下载PDF
On the Adjacent Strong Edge Coloring of Halin Graphs 被引量:2
15
作者 刘林忠 李引珍 +1 位作者 张忠辅 王建方 《Journal of Mathematical Research and Exposition》 CSCD 北大核心 2003年第2期241-246,共6页
A proper k-edge coloring f of graph G(V, E) is said to be a k:-adjacent strong edge coloring of graph G(V,E) iff every uv∈E(G) satisfy f[u]≠f/[v], where f[u] = {f(uw)|uw ∈E(G)} then f is called k-adjacent strong ed... A proper k-edge coloring f of graph G(V, E) is said to be a k:-adjacent strong edge coloring of graph G(V,E) iff every uv∈E(G) satisfy f[u]≠f/[v], where f[u] = {f(uw)|uw ∈E(G)} then f is called k-adjacent strong edge coloring of G, is abbreviated k-ASEC: and x'as(G) = min{k|k-ASEC of G} is called the adjacent strong edge chromatic number. In this paper, we study the x'as(G) of Halin graphs with △A(G)≥5. 展开更多
关键词 adjacent strong edge coloring adjacent strong edge chromatics number Halin graph
下载PDF
几类图的相邻顶点可区别的全染色 被引量:7
16
作者 孙磊 孙艳丽 董海燕 《西南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2006年第4期1-4,共4页
给出了几类特殊图相邻顶点可区别的全色数,如双路间和二部(V1,V2)间叠加匹配形成的系列图、双圈(prism)、双轮.并得到边连通度λ(G)=1的图相邻顶点可区别的全染色的性质.
关键词 相邻顶点可区别的全染色 相邻顶点可区别的全色数 匹配 边连通度
下载PDF
关于邻点可区别全染色的几个新结果 被引量:8
17
作者 董海燕 孙磊 孙艳丽 《广西师范大学学报(自然科学版)》 CAS 北大核心 2005年第3期41-43,共3页
邻点可区别全染色是在正常全染色的定义下,使得任两相邻顶点的色集不同.顶点v的色集是v的颜色及其与v关联的所有边的颜色.我们给出了几类特殊图的邻点可区别全色数.
关键词 简单连通图 邻点可区别全染色 邻点可区别全色数
下载PDF
关于S_m∨S_n的边色数和邻强边色数 被引量:2
18
作者 张忠辅 任志国 +2 位作者 刘君 包世堂 赵传成 《运筹与管理》 CSCD 2006年第1期6-8,共3页
本文研究了m+1阶的星Sm和n+1阶的星Sn的联图Sm∨Sn的边染色和邻强边染色,得到了Sm∨Sn的边色数和邻强边色数。
关键词 联图 边色数 邻强边色数
下载PDF
S_m∨P_n的邻强边染色 被引量:3
19
作者 张玉栋 郝自军 +2 位作者 晁福刚 何尚录 张忠辅 《西安交通大学学报》 EI CAS CSCD 北大核心 2006年第12期1463-1466,共4页
为了解决图的邻强边染色问题中一个图的色数算法问题,通过特别的方法来记图的染色过程,同时分4种情况讨论了星和路联图的邻强边染色问题,指出在染色过程中给定的4种情况的染色方法各不相同,并通过对图的着色得到了星和路联图的邻强边色数.
关键词 联图 邻强边色数
下载PDF
六角系统关联色数与邻点可区别关联色数 被引量:5
20
作者 周薇 刘西奎 王文丽 《山东大学学报(理学版)》 CAS CSCD 北大核心 2008年第9期57-62,共6页
通过运用嵌入法,得到了平面中任意六角系统以及六角系统的r-冠图的关联色数和邻点可区别关联色数。
关键词 六角系统 关联色数 邻点可区别关联色数 r-冠图
下载PDF
上一页 1 2 15 下一页 到第
使用帮助 返回顶部