This paper describes a stabilization effect after installating an adjustable speed generator (ASG) in a multi machine power system. A personal computer based ASG module has been de veloped for the simulations in...This paper describes a stabilization effect after installating an adjustable speed generator (ASG) in a multi machine power system. A personal computer based ASG module has been de veloped for the simulations in parallel with the analog power system simulator i n the Research Laboratory of the Kyushu Electric Power Co. The three phase ins t antaneous value based ASG model has been developed in the Matlab/Simulink envir onment for its detailed and real time simulations, which have been performed on a digital signal processor (DSP) board with AD and DA conversion interfaces inst alled in a personal computer (PC). Simulational results indicate the hig hly improved overall stability of the multi machine power system after installa ting the ASG.展开更多
This paper presents a new approach to alleviate the harmonics and to enhance the power factor of the ASD (adjustable speed drive). A conventional ASD with 2-level PWM (pulse width modulation) inverters generate hi...This paper presents a new approach to alleviate the harmonics and to enhance the power factor of the ASD (adjustable speed drive). A conventional ASD with 2-level PWM (pulse width modulation) inverters generate high dv/dt and high frequency common mode voltages which are harmful for the drive applications. It reduces the motor bearings life and conducted EMI (electro magnetic interference) deteriorates the insulation. In this paper, a diode clamped multilevel (3-level) inverter is used to perform dual task. It generates HF (high frequency) current to be injected at the input of the three-phase front-end rectifier thereby improving the harmonic spectra and the power factor. It also drives the induction motor. The salient feature of this paper is that it does not require separate converters for improving power factor and to drive induction motor. Furthermore, inverter switches operate with ZVS (zero voltage switching), thus reducing the switching losses substantially, The voltage stress of the switches also has been reduced to half of the conventional 2-level converter. The inverter is operated with SPWM (sinusoidal pulse width modulation) technique. The simulation results for a prototype of 2.2 kW are presented.展开更多
As energy efficiency and indoor comfort increasingly become key standards in modern residential and office environments,research on intelligent fan speed control systems has become particularly important.This study ai...As energy efficiency and indoor comfort increasingly become key standards in modern residential and office environments,research on intelligent fan speed control systems has become particularly important.This study aims to develop a temperature-feedback-based fan speed optimization strategy to achieve higher energy efficiency and user comfort.Firstly,by analyzing existing fan speed control technologies,their main limitations are identified,such as the inability to achieve smooth speed transitions.To address this issue,a BP-PID speed control algorithm is designed,which dynamically adjusts fan speed based on indoor temperature changes.Experimental validation demonstrates that the designed system can achieve smooth speed transitions compared to traditional fan systems while maintaining stable indoor temperatures.Furthermore,the real-time responsiveness of the system is crucial for enhancing user comfort.Our research not only demonstrates the feasibility of temperature-based fan speed optimization strategies in both theory and practice but also provides valuable insights for energy management in future smart home environments.Ultimately,this research outcome will facilitate the development of smart home systems and have a positive impact on environmental sustainability.展开更多
文摘This paper describes a stabilization effect after installating an adjustable speed generator (ASG) in a multi machine power system. A personal computer based ASG module has been de veloped for the simulations in parallel with the analog power system simulator i n the Research Laboratory of the Kyushu Electric Power Co. The three phase ins t antaneous value based ASG model has been developed in the Matlab/Simulink envir onment for its detailed and real time simulations, which have been performed on a digital signal processor (DSP) board with AD and DA conversion interfaces inst alled in a personal computer (PC). Simulational results indicate the hig hly improved overall stability of the multi machine power system after installa ting the ASG.
文摘This paper presents a new approach to alleviate the harmonics and to enhance the power factor of the ASD (adjustable speed drive). A conventional ASD with 2-level PWM (pulse width modulation) inverters generate high dv/dt and high frequency common mode voltages which are harmful for the drive applications. It reduces the motor bearings life and conducted EMI (electro magnetic interference) deteriorates the insulation. In this paper, a diode clamped multilevel (3-level) inverter is used to perform dual task. It generates HF (high frequency) current to be injected at the input of the three-phase front-end rectifier thereby improving the harmonic spectra and the power factor. It also drives the induction motor. The salient feature of this paper is that it does not require separate converters for improving power factor and to drive induction motor. Furthermore, inverter switches operate with ZVS (zero voltage switching), thus reducing the switching losses substantially, The voltage stress of the switches also has been reduced to half of the conventional 2-level converter. The inverter is operated with SPWM (sinusoidal pulse width modulation) technique. The simulation results for a prototype of 2.2 kW are presented.
文摘As energy efficiency and indoor comfort increasingly become key standards in modern residential and office environments,research on intelligent fan speed control systems has become particularly important.This study aims to develop a temperature-feedback-based fan speed optimization strategy to achieve higher energy efficiency and user comfort.Firstly,by analyzing existing fan speed control technologies,their main limitations are identified,such as the inability to achieve smooth speed transitions.To address this issue,a BP-PID speed control algorithm is designed,which dynamically adjusts fan speed based on indoor temperature changes.Experimental validation demonstrates that the designed system can achieve smooth speed transitions compared to traditional fan systems while maintaining stable indoor temperatures.Furthermore,the real-time responsiveness of the system is crucial for enhancing user comfort.Our research not only demonstrates the feasibility of temperature-based fan speed optimization strategies in both theory and practice but also provides valuable insights for energy management in future smart home environments.Ultimately,this research outcome will facilitate the development of smart home systems and have a positive impact on environmental sustainability.