Light emitting diode(LED) is the fourth generation lighting source,but it has some shortcomings such as complex chip packaging process and the unbalanced light color of phosphor in long-time application.In this study,...Light emitting diode(LED) is the fourth generation lighting source,but it has some shortcomings such as complex chip packaging process and the unbalanced light color of phosphor in long-time application.In this study,a kind of Eu-terephthalic acid/Tb-sulfosalicylate/ZrO_(2)/ZnZrO_(3)(Eu-PTA/Tb-SSA/ZrO_(2)/ZnZrO_(3))phosphor with warm white light emission properties was prepared,and the warm white light LED(wWLEDs) was successfully prepared by encapsulating Eu-PTA/Tb-SSA/ZrO_(2)/ZnZrO_(3) phosphors together with 270 nm UV-chip.The ZrO_(2)/ZnZrO_(3),Tb-SSA/ZrO_(2)/ZnZrO_(3) and Eu-PTA/ZrO_(2)/ZnZrO_(3) samples show blue emission,green emission and red emission under deep ultraviolet(UV,270 nm) excitation,respectively.The Tb-SSA and Eu-PTA are co-doped into ZrO_(2)/ZnZrO_(3) matrix with blue emission to achieve the warm white light emission,and the light color can be adjusted by controlling the doping amount of Eu^(3+)-and Tb^(3+).Through the excitation method of single-component phosphor by the single chip,the complex chip packaging process of w-LED can be solved.By doping rare earth organic complexes into porous ZrO_(2)/ZnZrO_(3) matrix,the problems of the light color unbalanced of phosphor and the low luminescence intensity of rare earth doped metal oxides composites can be solved.展开更多
This paper addresses the challenge of integrating priority passage for emergency vehicles with optimal intersection control in modern urban traffic. It proposes an innovative strategy based on deep learning to enable ...This paper addresses the challenge of integrating priority passage for emergency vehicles with optimal intersection control in modern urban traffic. It proposes an innovative strategy based on deep learning to enable emergency vehicles to pass through intersections efficiently and safely. The research aims to develop a deep learning model that utilizes intersection violation monitoring cameras to identify emergency vehicles in real time. This system adjusts traffic signals to ensure the rapid passage of emergency vehicles while simultaneously optimizing the overall efficiency of the traffic system. In this study, OpenCV is used in combination with Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN) to jointly complete complex image processing and analysis tasks, to realize the purpose of fast travel of emergency vehicles. At the end of this study, the principle of the You Only Look Once (YOLO) algorithm can be used to design a website and a mobile phone application (app) to enable private vehicles with emergency needs to realize emergency passage through the application, which is also of great significance to improve the overall level of urban traffic management, reduce traffic congestion and promote the development of related technologies.展开更多
A new single-mode optoelectronic oscillator(OEO) with three coupled cavities is proposed and demonstrated. A Fabry-Perot(F-P) cavity fiber laser and an optical-electrical feedback branch are coupled together to constr...A new single-mode optoelectronic oscillator(OEO) with three coupled cavities is proposed and demonstrated. A Fabry-Perot(F-P) cavity fiber laser and an optical-electrical feedback branch are coupled together to construct an optoelectronic oscillator, where the F-P cavity fiber laser serves as a light source, and a modulator is placed in the laser cavity to implement reciprocating modulation, which simultaneously splits the laser cavity into two parts and forms a dual-loop configuration. To complete an optoelectronic oscillator, part of optical signal is output from the F-P cavity to implement the feedback modulation, which constructs the third cavity. Since only the oscillation signal satisfies the requirements of all the three cavities, a single-mode oscillation can be finally achieved. Three resonant cavities are successfully designed without adding more optoelectronic devices, and the side-modes can be well suppressed with low cost. The oscillation condition is theoretically analyzed. In the experimental demonstration, a 20 GHz single longitudinal mode microwave signal is successfully obtained.展开更多
基金supported by the National Natural Science Foundation of China (51572034)the Jilin Province Science and Technology Development Plan Project of China (20220203168SF)。
文摘Light emitting diode(LED) is the fourth generation lighting source,but it has some shortcomings such as complex chip packaging process and the unbalanced light color of phosphor in long-time application.In this study,a kind of Eu-terephthalic acid/Tb-sulfosalicylate/ZrO_(2)/ZnZrO_(3)(Eu-PTA/Tb-SSA/ZrO_(2)/ZnZrO_(3))phosphor with warm white light emission properties was prepared,and the warm white light LED(wWLEDs) was successfully prepared by encapsulating Eu-PTA/Tb-SSA/ZrO_(2)/ZnZrO_(3) phosphors together with 270 nm UV-chip.The ZrO_(2)/ZnZrO_(3),Tb-SSA/ZrO_(2)/ZnZrO_(3) and Eu-PTA/ZrO_(2)/ZnZrO_(3) samples show blue emission,green emission and red emission under deep ultraviolet(UV,270 nm) excitation,respectively.The Tb-SSA and Eu-PTA are co-doped into ZrO_(2)/ZnZrO_(3) matrix with blue emission to achieve the warm white light emission,and the light color can be adjusted by controlling the doping amount of Eu^(3+)-and Tb^(3+).Through the excitation method of single-component phosphor by the single chip,the complex chip packaging process of w-LED can be solved.By doping rare earth organic complexes into porous ZrO_(2)/ZnZrO_(3) matrix,the problems of the light color unbalanced of phosphor and the low luminescence intensity of rare earth doped metal oxides composites can be solved.
文摘This paper addresses the challenge of integrating priority passage for emergency vehicles with optimal intersection control in modern urban traffic. It proposes an innovative strategy based on deep learning to enable emergency vehicles to pass through intersections efficiently and safely. The research aims to develop a deep learning model that utilizes intersection violation monitoring cameras to identify emergency vehicles in real time. This system adjusts traffic signals to ensure the rapid passage of emergency vehicles while simultaneously optimizing the overall efficiency of the traffic system. In this study, OpenCV is used in combination with Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN) to jointly complete complex image processing and analysis tasks, to realize the purpose of fast travel of emergency vehicles. At the end of this study, the principle of the You Only Look Once (YOLO) algorithm can be used to design a website and a mobile phone application (app) to enable private vehicles with emergency needs to realize emergency passage through the application, which is also of great significance to improve the overall level of urban traffic management, reduce traffic congestion and promote the development of related technologies.
基金supported by the National Natural Science Foundation of China(Nos.61061004 and 61465002)the Program for New Century Excellent Talents in University of Ministry of Education of China(No.NCET-10-0099)
文摘A new single-mode optoelectronic oscillator(OEO) with three coupled cavities is proposed and demonstrated. A Fabry-Perot(F-P) cavity fiber laser and an optical-electrical feedback branch are coupled together to construct an optoelectronic oscillator, where the F-P cavity fiber laser serves as a light source, and a modulator is placed in the laser cavity to implement reciprocating modulation, which simultaneously splits the laser cavity into two parts and forms a dual-loop configuration. To complete an optoelectronic oscillator, part of optical signal is output from the F-P cavity to implement the feedback modulation, which constructs the third cavity. Since only the oscillation signal satisfies the requirements of all the three cavities, a single-mode oscillation can be finally achieved. Three resonant cavities are successfully designed without adding more optoelectronic devices, and the side-modes can be well suppressed with low cost. The oscillation condition is theoretically analyzed. In the experimental demonstration, a 20 GHz single longitudinal mode microwave signal is successfully obtained.