The separate-layer injection in different interlayers and the injection of the same-molecular-weight polymer so- lution in a layer are necessary in the polymer flooding process because of heterogeneous multilayer sand...The separate-layer injection in different interlayers and the injection of the same-molecular-weight polymer so- lution in a layer are necessary in the polymer flooding process because of heterogeneous multilayer sandstone reservoirs in EOR projects. To alleviate the matching problems between the layer permeability and the injected polymer molecular weight, a molecular weight adjusting device with porous medium was designed on the basis of mechanical degradation principle. In terms of four variables (polymer concentration, pore diameter, length of shear component and flow rate ), the theological behavior of hydrolyzed polyacrylamide (HPAM) solu- tion flowing through the device was investigated in detail. The change of these variables is able to control the shear rate of HPAM solutions through ceramic foam, and achieve the desired degree of shear degradation and the final theological parameters-viscosity loss, viscoelasticity and pressure drop. Therefore, a linear relationship between viscosity loss and shearing rate was established so as to obtain the targeted viscosity easily. Field tests in the Daqing Oil Field showed that the polymer molecular weight could drop 20% to 50%. In a word, the results could guide the industrial application of the novel device and the further study of polymer degradation flowing through the porous medium.展开更多
Due to the well condition and the un-expected imbalance movement of the pumping unit in use, the energy consumes a lot. The existing balancing equipment cannot adjust and monitor the pumping units in real time. Theref...Due to the well condition and the un-expected imbalance movement of the pumping unit in use, the energy consumes a lot. The existing balancing equipment cannot adjust and monitor the pumping units in real time. Therefore this paper introduces the new adaptive balancing equipment—fan-shaped adaptive balancing intelligent device, projects a design of such control system based on PLC, and determines the principle of the control system, the execution software and the design flow. Site commissioning effect on Daqing Oilfield shows this fan-shaped adaptive balancing intelligent device can effectively adjust and monitor the pumping unit in real time, the balance even adjusts from 0.787 to 0.901, and integrated energy saving rate is 14.2%. It is approved that this control device is professionally designed, with strong compatibility, and high reliability.展开更多
Major advancements have been made in the field of prosthetics, but devices remain largely out of reach for the amputee population domiciled in the developing nations, which makes up 80% of the entire amputee populatio...Major advancements have been made in the field of prosthetics, but devices remain largely out of reach for the amputee population domiciled in the developing nations, which makes up 80% of the entire amputee population of the world. The amputees are left to contend with low function prosthetics that do not mimic the behavior of the natural lost limb, with the long-term use of such devices leading to physical injury to the user. This work was aimed at developing a low-cost ankle-foot prosthesis that affords the user the opportunity to manually alter the stiffness of the ankle, as well storing energy in a forefoot section to aid push-off in late stance. In this paper, the design and results of structural analysis performed on critical parts of the prosthesis are presented, as well as the future direction of the work.展开更多
Radio frequency/microwave-directed energy sources using wide bandgap SiC photoconductive semiconductors have attracted much attention due to their unique advantages of high-power output and multi-parameter adjustable ...Radio frequency/microwave-directed energy sources using wide bandgap SiC photoconductive semiconductors have attracted much attention due to their unique advantages of high-power output and multi-parameter adjustable ability.Over the past several years,benefitting from the sustainable innovations in laser technology and the significant progress in materials technology,megawatt-class output power electrical pulses with a flexible frequency in the P and L microwave wavebands have been achieved by photoconductive semiconductor devices.Here,we mainly summarize and review the recent progress of the high-power photonic microwave generation based on the SiC photoconductive semiconductor devices in the linear modulation mode,including the mechanism,system architecture,critical technology,and experimental demonstration of the proposed high-power photonic microwave sources.The outlooks and challenges for the future of multi-channel power synthesis development of higher power photonic microwave using wide bandgap photoconductors are also discussed.展开更多
In this paper,we propose a fully Soft Bionic Grasping Device(SBGD),which has advantages in automatically adjusting the grasping range,variable stiffness,and controllable bending shape.This device consists of soft grip...In this paper,we propose a fully Soft Bionic Grasping Device(SBGD),which has advantages in automatically adjusting the grasping range,variable stiffness,and controllable bending shape.This device consists of soft gripper structures and a soft bionic bracket structure.We adopt the local thin-walled design in the soft gripper structures.This design improves the grippers’bending efficiency,and imitate human finger’s segmental bending function.In addition,this work also proposes a pneumatic soft bionic bracket structure,which not only can fix grippers,but also can automatically adjust the grasping space by imitating the human adjacent fingers’opening and closing movements.Due to the above advantages,the SBGD can grasp larger or smaller objects than the regular grasping devices.Particularly,to grasp small objects reliably,we further present a new Pinching Grasping(PG)method.The great performance of the fully SBGD is verified by experiments.This work will promote innovative development of the soft bionic grasping robots,and greatly meet the applications of dexterous grasping multi-size and multi-shape objects.展开更多
基金Supported by the Program for Yangtse River Scholars and Innovative Research Terms in Universities(IRT0936)the National Basic Research Program of China(2009CB219905+2 种基金2009CB219907)the Daqing Oilfield Co.Ltd
文摘The separate-layer injection in different interlayers and the injection of the same-molecular-weight polymer so- lution in a layer are necessary in the polymer flooding process because of heterogeneous multilayer sandstone reservoirs in EOR projects. To alleviate the matching problems between the layer permeability and the injected polymer molecular weight, a molecular weight adjusting device with porous medium was designed on the basis of mechanical degradation principle. In terms of four variables (polymer concentration, pore diameter, length of shear component and flow rate ), the theological behavior of hydrolyzed polyacrylamide (HPAM) solu- tion flowing through the device was investigated in detail. The change of these variables is able to control the shear rate of HPAM solutions through ceramic foam, and achieve the desired degree of shear degradation and the final theological parameters-viscosity loss, viscoelasticity and pressure drop. Therefore, a linear relationship between viscosity loss and shearing rate was established so as to obtain the targeted viscosity easily. Field tests in the Daqing Oil Field showed that the polymer molecular weight could drop 20% to 50%. In a word, the results could guide the industrial application of the novel device and the further study of polymer degradation flowing through the porous medium.
文摘Due to the well condition and the un-expected imbalance movement of the pumping unit in use, the energy consumes a lot. The existing balancing equipment cannot adjust and monitor the pumping units in real time. Therefore this paper introduces the new adaptive balancing equipment—fan-shaped adaptive balancing intelligent device, projects a design of such control system based on PLC, and determines the principle of the control system, the execution software and the design flow. Site commissioning effect on Daqing Oilfield shows this fan-shaped adaptive balancing intelligent device can effectively adjust and monitor the pumping unit in real time, the balance even adjusts from 0.787 to 0.901, and integrated energy saving rate is 14.2%. It is approved that this control device is professionally designed, with strong compatibility, and high reliability.
文摘Major advancements have been made in the field of prosthetics, but devices remain largely out of reach for the amputee population domiciled in the developing nations, which makes up 80% of the entire amputee population of the world. The amputees are left to contend with low function prosthetics that do not mimic the behavior of the natural lost limb, with the long-term use of such devices leading to physical injury to the user. This work was aimed at developing a low-cost ankle-foot prosthesis that affords the user the opportunity to manually alter the stiffness of the ankle, as well storing energy in a forefoot section to aid push-off in late stance. In this paper, the design and results of structural analysis performed on critical parts of the prosthesis are presented, as well as the future direction of the work.
基金supported in part by the National Natural Science Foundation of China(Nos.62071477 and 62101577)the Natural Science Foundation of Hunan Province(No.2021JJ40660)。
文摘Radio frequency/microwave-directed energy sources using wide bandgap SiC photoconductive semiconductors have attracted much attention due to their unique advantages of high-power output and multi-parameter adjustable ability.Over the past several years,benefitting from the sustainable innovations in laser technology and the significant progress in materials technology,megawatt-class output power electrical pulses with a flexible frequency in the P and L microwave wavebands have been achieved by photoconductive semiconductor devices.Here,we mainly summarize and review the recent progress of the high-power photonic microwave generation based on the SiC photoconductive semiconductor devices in the linear modulation mode,including the mechanism,system architecture,critical technology,and experimental demonstration of the proposed high-power photonic microwave sources.The outlooks and challenges for the future of multi-channel power synthesis development of higher power photonic microwave using wide bandgap photoconductors are also discussed.
基金This work was funded by the National Natural Science Foundation of Chinaunder Grant 62073305the Fundamental Research Funds for the Central Universities,China University of Geosciences(Wuhan)(Nos.CUG170610 and CUGGC02).
文摘In this paper,we propose a fully Soft Bionic Grasping Device(SBGD),which has advantages in automatically adjusting the grasping range,variable stiffness,and controllable bending shape.This device consists of soft gripper structures and a soft bionic bracket structure.We adopt the local thin-walled design in the soft gripper structures.This design improves the grippers’bending efficiency,and imitate human finger’s segmental bending function.In addition,this work also proposes a pneumatic soft bionic bracket structure,which not only can fix grippers,but also can automatically adjust the grasping space by imitating the human adjacent fingers’opening and closing movements.Due to the above advantages,the SBGD can grasp larger or smaller objects than the regular grasping devices.Particularly,to grasp small objects reliably,we further present a new Pinching Grasping(PG)method.The great performance of the fully SBGD is verified by experiments.This work will promote innovative development of the soft bionic grasping robots,and greatly meet the applications of dexterous grasping multi-size and multi-shape objects.