A capacitive tactile sensor(CTS)has been developed by assembling a double-sided patterned dielectric layer and novel electrodes.The patterned aluminium foil-supported electrode comprises zinc-aluminium layered double ...A capacitive tactile sensor(CTS)has been developed by assembling a double-sided patterned dielectric layer and novel electrodes.The patterned aluminium foil-supported electrode comprises zinc-aluminium layered double hydroxides(Zn AlLDH),MXene,and Ag NWs via electrostatic interaction.This flexible device enables greater structural deformation,thereby enhancing sensitivity to a wide range of pressure.The sensitivity of the CTS can be customized to meet specific requirements by matching the microstructured electrodes with the patterned dielectric layer.An optimized sensor exhibits a sensitivity of 2.752 kPa^(–1)within 30 kPa,a response time of approximately 100 ms,and a wide detection range of 0–300 kPa.The strong physical interaction among the electrode materials ensures a reliable conductive network,ensuring the long-term stability of the sensor,even after 7500 loading and unloading cycles.Furthermore,the fabricated CTS device presents a promising prospect for the integration into wearable electronics,with the ability to effectively respond to both human activities and external physical stimuli.展开更多
Conductive Ti_(3)C_(2)T_(x)MXenes have been widely investigated for the construction of flexible and highly-sensitive pressure sensors.Although the inevitable oxidation of solution-processed MXene has been recognized,...Conductive Ti_(3)C_(2)T_(x)MXenes have been widely investigated for the construction of flexible and highly-sensitive pressure sensors.Although the inevitable oxidation of solution-processed MXene has been recognized,the effect of the irreversible oxidation of MXene on its electrical conductivity and sensing properties is yet to be understood.Herein,we construct a highly-sensitive and degradable piezoresistive pressure sensor by coating Ti_(3)C_(2)T_(x)MXene flakes with different degrees of in situ oxidation onto paper substrates using the dipping-drying method.In situ oxidation can tune the intrinsic resistance and expand the interlayer distance of MXene nanosheets.The partially oxidized MXene-based piezoresistive pressure sensor exhibits a high sensitivity of 28.43 kPa^(-1),which is greater than those of pristine MXene,over-oxidized MXene,and state-of-the-art paper-based pressure sensors.Additionally,these sensors exhibit a short response time of 98.3 ms,good durability over 5000 measurement cycles,and a low force detection limit of 0.8 Pa.Moreover,MXene-based sensing elements are easily degraded and environmentally friendly.The MXene-based pressure sensor shows promise for practical applications in tracking body movements,sports coaching,remote health monitoring,and human–computer interactions.展开更多
基金supported by the Natural Science Foundation of Guangdong Province(Grant No.2021A1515010691)the College Innovation Team Project of Guangdong Province(Grant No.2021KCXTD042)+1 种基金the Major Program of Basic Research and Applied Research of Guangdong Province(Grant No.2019KZDXM051)Wuyi University-Hong Kong-Macao Joint Research and Development Fund(Grant Nos.2019WGALH06 and 2021WGALH15)。
文摘A capacitive tactile sensor(CTS)has been developed by assembling a double-sided patterned dielectric layer and novel electrodes.The patterned aluminium foil-supported electrode comprises zinc-aluminium layered double hydroxides(Zn AlLDH),MXene,and Ag NWs via electrostatic interaction.This flexible device enables greater structural deformation,thereby enhancing sensitivity to a wide range of pressure.The sensitivity of the CTS can be customized to meet specific requirements by matching the microstructured electrodes with the patterned dielectric layer.An optimized sensor exhibits a sensitivity of 2.752 kPa^(–1)within 30 kPa,a response time of approximately 100 ms,and a wide detection range of 0–300 kPa.The strong physical interaction among the electrode materials ensures a reliable conductive network,ensuring the long-term stability of the sensor,even after 7500 loading and unloading cycles.Furthermore,the fabricated CTS device presents a promising prospect for the integration into wearable electronics,with the ability to effectively respond to both human activities and external physical stimuli.
基金National Natural Science Foundation of China,Grant/Award Numbers:11904091,52072280,52102141NSF of Hubei Province,Grant/Award Number:2021CFB051Basic Science Center Program of NSFC,Grant/Award Number:51788104。
文摘Conductive Ti_(3)C_(2)T_(x)MXenes have been widely investigated for the construction of flexible and highly-sensitive pressure sensors.Although the inevitable oxidation of solution-processed MXene has been recognized,the effect of the irreversible oxidation of MXene on its electrical conductivity and sensing properties is yet to be understood.Herein,we construct a highly-sensitive and degradable piezoresistive pressure sensor by coating Ti_(3)C_(2)T_(x)MXene flakes with different degrees of in situ oxidation onto paper substrates using the dipping-drying method.In situ oxidation can tune the intrinsic resistance and expand the interlayer distance of MXene nanosheets.The partially oxidized MXene-based piezoresistive pressure sensor exhibits a high sensitivity of 28.43 kPa^(-1),which is greater than those of pristine MXene,over-oxidized MXene,and state-of-the-art paper-based pressure sensors.Additionally,these sensors exhibit a short response time of 98.3 ms,good durability over 5000 measurement cycles,and a low force detection limit of 0.8 Pa.Moreover,MXene-based sensing elements are easily degraded and environmentally friendly.The MXene-based pressure sensor shows promise for practical applications in tracking body movements,sports coaching,remote health monitoring,and human–computer interactions.