Let X be an RD-space. In this paper, the authors establish the boundedness of the commutator Tbf = bTf-T(bf) on Lp , p∈(1,∞), where T is a Calderón-Zygmund operator related to the admissible function ρ and b∈...Let X be an RD-space. In this paper, the authors establish the boundedness of the commutator Tbf = bTf-T(bf) on Lp , p∈(1,∞), where T is a Calderón-Zygmund operator related to the admissible function ρ and b∈BMOθ(X)BMO(X). Moreover, they prove that Tb is bounded from the Hardy space H1ρ(X) into the weak Lebesgue space L1weak(X). This can be used to deal with the Schrdinger operators and Schrdinger type operators on the Euclidean space Rn and the sub-Laplace Schrdinger operators on the stratified Lie group G.展开更多
In the present paper, we derive some third-order differential subordination results for analytic functions in the open unit disk, using the operator Bcκf by means of normalized form of the generalized Bessel function...In the present paper, we derive some third-order differential subordination results for analytic functions in the open unit disk, using the operator Bcκf by means of normalized form of the generalized Bessel functions of the first kind, which is defined as z(Bκ+1^c f(z))′= κBκ^c f(z)-(κ- 1)Bκ+1^c f(z),where b, c, p ∈ C and κ = p +(b + 1)/2 ∈ C / Z0^-(Z0^-= {0,-1,-2, … }). The results are obtained by considering suitable classes of admissible functions. Various known or new special cases of our main results are also pointed out.展开更多
In this paper,we establish the existence of local stable manifolds for a semi-linear differential equation,where the linear part is a Hille-Yosida operator on a Banach space and the nonlinear forcing term f satisfies ...In this paper,we establish the existence of local stable manifolds for a semi-linear differential equation,where the linear part is a Hille-Yosida operator on a Banach space and the nonlinear forcing term f satisfies the ψ-Lipschitz conditions,where ψ belongs to certain classes of admissible function spaces.The approach being used is the fixed point arguments and the characterization of the exponential dichotomy of evolution equations in admissible spaces of functions defined on the positive half-line.展开更多
基金National Natural Science Foundation of China (Grant Nos. 10901018 and 11001002)the Shanghai Leading Academic Discipline Project (Grant No. J50101)the Fundamental Research Funds for the Central Universities
文摘Let X be an RD-space. In this paper, the authors establish the boundedness of the commutator Tbf = bTf-T(bf) on Lp , p∈(1,∞), where T is a Calderón-Zygmund operator related to the admissible function ρ and b∈BMOθ(X)BMO(X). Moreover, they prove that Tb is bounded from the Hardy space H1ρ(X) into the weak Lebesgue space L1weak(X). This can be used to deal with the Schrdinger operators and Schrdinger type operators on the Euclidean space Rn and the sub-Laplace Schrdinger operators on the stratified Lie group G.
基金partly supported by the Natural Science Foundation of China(11271045)the Higher School Doctoral Foundation of China(20100003110004)+2 种基金the Natural Science Foundation of Inner Mongolia of China(2010MS0117)athe Higher School Foundation of Inner Mongolia of China(NJZY13298)the Commission for the Scientific Research Projects of Kafkas Univertsity(2012-FEF-30)
文摘In the present paper, we derive some third-order differential subordination results for analytic functions in the open unit disk, using the operator Bcκf by means of normalized form of the generalized Bessel functions of the first kind, which is defined as z(Bκ+1^c f(z))′= κBκ^c f(z)-(κ- 1)Bκ+1^c f(z),where b, c, p ∈ C and κ = p +(b + 1)/2 ∈ C / Z0^-(Z0^-= {0,-1,-2, … }). The results are obtained by considering suitable classes of admissible functions. Various known or new special cases of our main results are also pointed out.
基金Deanship of Scientific Research at Majmaah University for supporting this work under Project Number No.R-1441-27.
文摘In this paper,we establish the existence of local stable manifolds for a semi-linear differential equation,where the linear part is a Hille-Yosida operator on a Banach space and the nonlinear forcing term f satisfies the ψ-Lipschitz conditions,where ψ belongs to certain classes of admissible function spaces.The approach being used is the fixed point arguments and the characterization of the exponential dichotomy of evolution equations in admissible spaces of functions defined on the positive half-line.