The magnetohydrodynamics (MHD) convection flow and heat transfer of an incompressible viscous nanofluid past a semi-infinite vertical stretching sheet in the pres- ence of thermal stratification are examined. The pa...The magnetohydrodynamics (MHD) convection flow and heat transfer of an incompressible viscous nanofluid past a semi-infinite vertical stretching sheet in the pres- ence of thermal stratification are examined. The partial differential equations governing the problem under consideration are transformed by a special form of the Lie symmetry group transformations, i.e., a one-parameter group of transformations into a system of ordinary differential equations which are numerically solved using the Runge-Kutta-Gill- based shooting method. It is concluded that the flow field, temperature, and nanoparticle volume fraction profiles are significantly influenced by the thermal stratification and the magnetic field.展开更多
Using a new symmetry group theory, the transformation groups and symmetries of the general Broer-Kaup system are obtained. The results are much simpler than those obtained via the standard approaches.
In this paper, a characterization of almost periodicity of topological transformation groups on uniform spaces is given. By searching the appropriate base for uniform structure, it is shown that the topological transf...In this paper, a characterization of almost periodicity of topological transformation groups on uniform spaces is given. By searching the appropriate base for uniform structure, it is shown that the topological transformation group is topologically equivalent to an isometric one if it is uniformly equicontinuous.展开更多
Let H. be the n-direct proded of Heisenbery group H, P the affine group of Hn. Then P ho a natural unitary representation U on L2(Hn). In this paper,the direct sum decomposition of irreducible invariant closed subspac...Let H. be the n-direct proded of Heisenbery group H, P the affine group of Hn. Then P ho a natural unitary representation U on L2(Hn). In this paper,the direct sum decomposition of irreducible invariant closed subspaces under unitary representation U for L2(Hn) is given. The restrictins of U on these subspaces are square-integrable. The charactedsation of admissible condition is obtained in ierms of the Fourier transform. By seleting appropriately an orthogonal wavelet basis and the wavelet transform,the authors obtain the orthogonal direct chin decomposinon of function space L2(P,dμl).展开更多
In this paper, the finite symmetry transformation group of the (2+1)-dimensional coupled Burgers equation is studied by the modified direct method, and with the help of the truncated Painleve′ expansion approach, ...In this paper, the finite symmetry transformation group of the (2+1)-dimensional coupled Burgers equation is studied by the modified direct method, and with the help of the truncated Painleve′ expansion approach, some special localized structures for the (2+1)-dimensional coupled Burgers equation are obtained, in particular, the dromion-like and solitoff-like structures.展开更多
In this paper, we introduce a practical method for obtaining the structure of thegroup of units for the ring of linear transformations of a vector space over an arbitrary field,and we give a further generalization of ...In this paper, we introduce a practical method for obtaining the structure of thegroup of units for the ring of linear transformations of a vector space over an arbitrary field,and we give a further generalization of the result in [3].展开更多
In this paper,including some partial differential equations with a number of independent variables, which can he reduced by the infinitesimal form of the group, we obtain the theory of similarity transformation and it...In this paper,including some partial differential equations with a number of independent variables, which can he reduced by the infinitesimal form of the group, we obtain the theory of similarity transformation and its application of the second order nonlinear partial differential equations which have two independent variables and two dependent variables in mechanics.展开更多
To address the problem that dynamic wind turbine clutter(WTC)significantly degrades the performance of weather radar,a WTC mitigation algorithm using morphological component analysis(MCA)with group sparsity is studied...To address the problem that dynamic wind turbine clutter(WTC)significantly degrades the performance of weather radar,a WTC mitigation algorithm using morphological component analysis(MCA)with group sparsity is studied in this paper.The ground clutter is suppressed firstly to reduce the morphological compositions of radar echo.After that,the MCA algorithm is applied and the window used in the short-time Fourier transform(STFT)is optimized to lessen the spectrum leakage of WTC.Finally,the group sparsity structure of WTC in the STFT domain can be utilized to decrease the degrees of freedom in the solution,thus contributing to better estimation performance of weather signals.The effectiveness and feasibility of the proposed method are demonstrated by numerical simulations.展开更多
The mutual relationships between four generating functions F-1(q, Q), F-2(q, P), F-3(p, P), F-4(p, Q) and four kinds of canonical variables q, p, Q, P concerned in Hamilton's canonical transformations, can be got ...The mutual relationships between four generating functions F-1(q, Q), F-2(q, P), F-3(p, P), F-4(p, Q) and four kinds of canonical variables q, p, Q, P concerned in Hamilton's canonical transformations, can be got with linear transformations from seven basic formulae. All of them are Legendre's transformation, which are implemented by 32 matrices of 8 x 8 which are homomorphic to D-4 point group of 8 elements with correspondence of 4:1. Transformations and relationships of four state functions G(P, T), H(P, S), U(V, S), F(V, T) and four variables P, V, T, S in thermodynamics, are just the same Lagendre's transformations with the relationships of canonical transformations. The state functions of thermodynamics are summarily founded on experimental results of macroscope measurements, and Hamilton's canonical transformations are theoretical generalization of classical mechanics. Both group represents are the same, and it is to say, their mathematical frames are the same. This generality indicates the thermodynamical transformation is an example of one-dimensional Hamilton's canonical transformation.展开更多
文摘The magnetohydrodynamics (MHD) convection flow and heat transfer of an incompressible viscous nanofluid past a semi-infinite vertical stretching sheet in the pres- ence of thermal stratification are examined. The partial differential equations governing the problem under consideration are transformed by a special form of the Lie symmetry group transformations, i.e., a one-parameter group of transformations into a system of ordinary differential equations which are numerically solved using the Runge-Kutta-Gill- based shooting method. It is concluded that the flow field, temperature, and nanoparticle volume fraction profiles are significantly influenced by the thermal stratification and the magnetic field.
文摘Using a new symmetry group theory, the transformation groups and symmetries of the general Broer-Kaup system are obtained. The results are much simpler than those obtained via the standard approaches.
文摘In this paper, a characterization of almost periodicity of topological transformation groups on uniform spaces is given. By searching the appropriate base for uniform structure, it is shown that the topological transformation group is topologically equivalent to an isometric one if it is uniformly equicontinuous.
文摘Let H. be the n-direct proded of Heisenbery group H, P the affine group of Hn. Then P ho a natural unitary representation U on L2(Hn). In this paper,the direct sum decomposition of irreducible invariant closed subspaces under unitary representation U for L2(Hn) is given. The restrictins of U on these subspaces are square-integrable. The charactedsation of admissible condition is obtained in ierms of the Fourier transform. By seleting appropriately an orthogonal wavelet basis and the wavelet transform,the authors obtain the orthogonal direct chin decomposinon of function space L2(P,dμl).
基金Project supported by the National Natural Science Foundation of China (Grant No. 11175092)the Scientific Research Fund of Education Department of Zhejiang Province of China (Grant No. Y201017148)K. C. Wong Magna Fund in Ningbo University
文摘In this paper, the finite symmetry transformation group of the (2+1)-dimensional coupled Burgers equation is studied by the modified direct method, and with the help of the truncated Painleve′ expansion approach, some special localized structures for the (2+1)-dimensional coupled Burgers equation are obtained, in particular, the dromion-like and solitoff-like structures.
基金Supported by the NSF of Educational Department of Henan Province(200510482001)
文摘In this paper, we introduce a practical method for obtaining the structure of thegroup of units for the ring of linear transformations of a vector space over an arbitrary field,and we give a further generalization of the result in [3].
文摘In this paper,including some partial differential equations with a number of independent variables, which can he reduced by the infinitesimal form of the group, we obtain the theory of similarity transformation and its application of the second order nonlinear partial differential equations which have two independent variables and two dependent variables in mechanics.
文摘To address the problem that dynamic wind turbine clutter(WTC)significantly degrades the performance of weather radar,a WTC mitigation algorithm using morphological component analysis(MCA)with group sparsity is studied in this paper.The ground clutter is suppressed firstly to reduce the morphological compositions of radar echo.After that,the MCA algorithm is applied and the window used in the short-time Fourier transform(STFT)is optimized to lessen the spectrum leakage of WTC.Finally,the group sparsity structure of WTC in the STFT domain can be utilized to decrease the degrees of freedom in the solution,thus contributing to better estimation performance of weather signals.The effectiveness and feasibility of the proposed method are demonstrated by numerical simulations.
文摘The mutual relationships between four generating functions F-1(q, Q), F-2(q, P), F-3(p, P), F-4(p, Q) and four kinds of canonical variables q, p, Q, P concerned in Hamilton's canonical transformations, can be got with linear transformations from seven basic formulae. All of them are Legendre's transformation, which are implemented by 32 matrices of 8 x 8 which are homomorphic to D-4 point group of 8 elements with correspondence of 4:1. Transformations and relationships of four state functions G(P, T), H(P, S), U(V, S), F(V, T) and four variables P, V, T, S in thermodynamics, are just the same Lagendre's transformations with the relationships of canonical transformations. The state functions of thermodynamics are summarily founded on experimental results of macroscope measurements, and Hamilton's canonical transformations are theoretical generalization of classical mechanics. Both group represents are the same, and it is to say, their mathematical frames are the same. This generality indicates the thermodynamical transformation is an example of one-dimensional Hamilton's canonical transformation.