期刊文献+
共找到86篇文章
< 1 2 5 >
每页显示 20 50 100
Application of the Modified Adomian Decomposition Method on a Mathematical Model of COVID-19
1
作者 Justina Mulenga Patrick Azere Phiri 《Journal of Applied Mathematics and Physics》 2023年第9期2597-2614,共18页
In this study, we constructed and analysed a mathematical model of COVID-19 in order to comprehend the transmission dynamics of the disease. The reproduction number (R<sub>C</sub>) was calculated via the n... In this study, we constructed and analysed a mathematical model of COVID-19 in order to comprehend the transmission dynamics of the disease. The reproduction number (R<sub>C</sub>) was calculated via the next generation matrix method. We also used the Lyaponuv method to show the global stability of both the disease free and endemic equilibrium points. The results showed that the disease-free equilibrium point is globally asymptotically stable if R<sub>C</sub> R<sub>C</sub> > 1. We further used the Adomian decomposition method and the modified Adomian decomposition method to obtain the solutions of the model. Numerical analysis of the model was done using Sagemath 9.0 software. 展开更多
关键词 COVID-19 Stability Analysis Equilibrium Points adomian decomposition Method Modified adomian decomposition Method Numerical Analysis
下载PDF
Solving Different Types of Differential Equations Using Modified and New Modified Adomian Decomposition Methods
2
作者 Justina Mulenga Patrick Azere Phiri 《Journal of Applied Mathematics and Physics》 2023年第6期1656-1676,共21页
The Modified Adomian Decomposition Method (MADM) is presented. A number of problems are solved to show the efficiency of the method. Further, a new solution scheme for solving boundary value problems with Neumann cond... The Modified Adomian Decomposition Method (MADM) is presented. A number of problems are solved to show the efficiency of the method. Further, a new solution scheme for solving boundary value problems with Neumann conditions is proposed. The scheme is based on the modified Adomian decomposition method and the inverse linear operator theorem. Several differential equations with Neumann boundary conditions are solved to demonstrate the high accuracy and efficiency of the proposed scheme. 展开更多
关键词 Neumann Conditions Modified adomian decomposition Method Solution Scheme New Modified adomian decomposition Method Differential Equations
下载PDF
Adomian Decomposition Method for Solving Fractional Time-Klein-Gordon Equations Using Maple
3
作者 Dalal Albogami Dalal Maturi Hashim Alshehri 《Applied Mathematics》 2023年第6期411-418,共8页
Adomian decomposition is a semi-analytical approach to solving ordinary and partial differential equations. This study aims to apply the Adomian Decomposition Technique to obtain analytic solutions for linear and nonl... Adomian decomposition is a semi-analytical approach to solving ordinary and partial differential equations. This study aims to apply the Adomian Decomposition Technique to obtain analytic solutions for linear and nonlinear time-fractional Klein-Gordon equations. The fractional derivatives are computed according to Caputo. Examples are provided. The findings show the explicitness, efficacy, and correctness of the used approach. Approximate solutions acquired by the decomposition method have been numerically assessed, given in the form of graphs and tables, and then these answers are compared with the actual solutions. The Adomian decomposition approach, which was used in this study, is a widely used and convergent method for the solutions of linear and non-linear time fractional Klein-Gordon equation. 展开更多
关键词 adomian decomposition KLEIN-GORDON Fractional Calculus
下载PDF
Adomian Decomposition Method for Solving Boussinesq Equations Using Maple
4
作者 Ameera Aljuhani Dalal Maturi Hashim Alshehri 《Applied Mathematics》 2023年第2期121-129,共9页
This paper uses the Adomian Decomposition Method (ADM) to solve Boussinesq equations using Maple. The Boussinesq approximation for water waves is a weakly nonlinear and long-wave approximation in fluid dynamics. The a... This paper uses the Adomian Decomposition Method (ADM) to solve Boussinesq equations using Maple. The Boussinesq approximation for water waves is a weakly nonlinear and long-wave approximation in fluid dynamics. The approximation is named after Joseph Boussinesq, who developed it in response to John Scott Russell’s observation of a wave of translation (also known as solitary wave or soliton). Bossinesq’s article from 1872 introduced the equations that are now known as the Boussinesq equations. Numerical methods are commonly utilized to solve nonlinear equation systems. In this paper, we investigate a nonlinear singly perturbed advection-diffusion problem. Using the usual Adomian Decomposition Method, we formulate an approximate linear advection-diffusion problem and investigate several practical numerical approaches for solving it (ADM). The Adomian Decomposition Method (ADM) is a powerful tool for numerical simulations and approximation analytic solutions. The Adomian Decomposition Method (ADM) is used to solve nonlinear advection differential equations using Maple by illustrating numerous examples. The findings are presented in the form of tables and graphs for several examples. For various examples, the findings are presented in the form of tables and graphs. The difference between the precise and numerical solutions indicates the Maple program solution’s efficacy, as well as the ease and speed with which it was acquired. 展开更多
关键词 adomian decomposition Method Boussinesq Equations Maple 18
下载PDF
Adomian Decomposition Method for Solving Time Fractional Burgers Equation Using Maple
5
作者 Fayza Alwehebi Aatef Hobiny Dalal Maturi 《Applied Mathematics》 2023年第5期324-335,共12页
In this paper, the Adomian decomposition method was used to solve the Time Fractional Burger equation using Mabel program. This method was applied to a number of examples of the Time Fractional Burger Equation. The ob... In this paper, the Adomian decomposition method was used to solve the Time Fractional Burger equation using Mabel program. This method was applied to a number of examples of the Time Fractional Burger Equation. The obtained numerical results were presented in the form of tables and graphics. The difference between the exact solutions and the numerical solutions shows us the effectiveness of the solution using the Mabel program and that this method gave accurate results and was close to the exact solution, in addition to its ability to obtain the numerical solution quickly and efficiently using the Mabel program. 展开更多
关键词 adomian decomposition Method Time Fractional Burgers Equation Maple 18
下载PDF
On the Application of Adomian Decomposition Method to Special Equations in Physical Sciences
6
作者 Aishah Alsulami Mariam Al-Mazmumy +1 位作者 Huda Bakodah Nawal Alzaid 《American Journal of Computational Mathematics》 2023年第3期387-397,共11页
The current manuscript makes use of the prominent iterative procedure, called the Adomian Decomposition Method (ADM), to tackle some important special differential equations. The equations of curiosity in this study a... The current manuscript makes use of the prominent iterative procedure, called the Adomian Decomposition Method (ADM), to tackle some important special differential equations. The equations of curiosity in this study are the singular equations that arise in many physical science applications. Thus, through the application of the ADM, a generalized recursive scheme was successfully derived and further utilized to obtain closed-form solutions for the models under consideration. The method is, indeed, fascinating as respective exact analytical solutions are accurately acquired with only a small number of iterations. 展开更多
关键词 Iterative Scheme adomian decomposition Method Initial-Value Problems Singular Ordinary Differential Equations
下载PDF
Modified asymptotic Adomian decomposition method for solving Boussinesq equation of groundwater flow 被引量:2
7
作者 陈芳 刘青泉 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2014年第4期481-488,共8页
The Adomian decomposition method (ADM) is an approximate analytic method for solving nonlinear equations. Generally, an approximate solution can be ob- tained by using only a few terms. However, in applications, we ... The Adomian decomposition method (ADM) is an approximate analytic method for solving nonlinear equations. Generally, an approximate solution can be ob- tained by using only a few terms. However, in applications, we need to use it flexibly according to the real problem. In this paper, based on the ADM, we give a modified asymptotic Adomian decomposition method and use it to solve the nonlinear Boussinesq equation describing groundwater flows. The example shows effectiveness of the modified asymptotic Adomian decomposition method. 展开更多
关键词 groundwater flow Boussinesq equation adomian decomposition asymp-totic adomian decomposition
下载PDF
Numerical Treatment of Initial Value Problems of Nonlinear Ordinary Differential Equations by Duan-Rach-Wazwaz Modified Adomian Decomposition Method 被引量:1
8
作者 Omür Umut Serpil Yasar 《International Journal of Modern Nonlinear Theory and Application》 2019年第1期17-39,共23页
We employ the Duan-Rach-Wazwaz modified Adomian decomposition method for solving initial value problems for the systems of nonlinear ordinary differential equations numerically. In order to confirm practicality, robus... We employ the Duan-Rach-Wazwaz modified Adomian decomposition method for solving initial value problems for the systems of nonlinear ordinary differential equations numerically. In order to confirm practicality, robustness and reliability of the method, we compare the results from the modified Adomian decomposition method with those from the MATHEMATICA solutions and also from the fourth-order Runge Kutta method solutions in some cases. Furthermore, we apply Padé approximants technique to improve the solutions of the modified decomposition method whenever the exact solutions exist. 展开更多
关键词 adomian decomposition Method Duan-Rach-Wazwaz Modified adomian decomposition Method Initial Value Problem Nonlinear Ordinary Differential Equation Mathematica Solution 4-th Order Runge Kutta Method Pade Approximants
下载PDF
Analytical investigation of Jeffery-Hamel flow with high magnetic field and nanoparticle by Adomian decomposition method 被引量:11
9
作者 M.SHEIKHOLESLAMI D.D.GANJI +1 位作者 H.R.ASHORYNEJAD H.B.ROKNI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2012年第1期25-36,共12页
In this study, the effects of magnetic field and nanoparticle on the Jeffery- Hamel flow are studied using a powerful analytical method called the Adomian decomposition method (ADM). The traditional Navier-Stokes eq... In this study, the effects of magnetic field and nanoparticle on the Jeffery- Hamel flow are studied using a powerful analytical method called the Adomian decomposition method (ADM). The traditional Navier-Stokes equation of fluid mechanics and Maxwell's electromagnetism governing equations are reduced to nonlinear ordinary differential equations to model the problem. The obtained results are well agreed with that of the Runge-Kutta method. The present plots confirm that the method has high accuracy for different a, Ha, and Re numbers. The flow field inside the divergent channel is studied for various values of Hartmann :number and angle of channel. The effect of nanoparticle volume fraction in the absence of magnetic field is investigated. 展开更多
关键词 MAGNETOHYDRODYNAMIC Jeffery-Hamel flow adomian decomposition method nonlinear ordinary differential equation NANOFLUID
下载PDF
SOLUTION OF SYSTEM OF FRACTIONAL DIFFERENTIAL EQUATIONS BY ADOMIAN DECOMPOSITION METHOD 被引量:2
10
作者 Duan Junsheng An Jianye Xu Mingyu2 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2007年第1期7-12,共6页
The aim of this paper is to apply the relatively new Adomian decomposition method to solving the system of linear fractional, in the sense of Riemann-Liouville and Caputo respectively, differential equations. The solu... The aim of this paper is to apply the relatively new Adomian decomposition method to solving the system of linear fractional, in the sense of Riemann-Liouville and Caputo respectively, differential equations. The solutions are expressed in terms of Mittag-Leffier functions of matric argument. The Adomian decomposition method is straightforward, applicable for broader problems and avoids the difficulties in applying integral transforms. As the order is 1, the result here is simplified to that of first order differential equation. 展开更多
关键词 rfractional calculus adomian decomposition method Mittag-Lemer function.
下载PDF
Adomian decomposition method simulation of von Kármán swrling bioconvection nanofluid flow 被引量:1
11
作者 M D SHAMSHUDDIN S R MISHRA +1 位作者 O ANWAR BEG A KADIR 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第10期2797-2813,共17页
The study reveals analytically on the 3-dimensional viscous time-dependent gyrotactic bioconvection in swirling nanofluid flow past from a rotating disk.It is known that the deformation of the disk is along the radial... The study reveals analytically on the 3-dimensional viscous time-dependent gyrotactic bioconvection in swirling nanofluid flow past from a rotating disk.It is known that the deformation of the disk is along the radial direction.In addition to that Stefan blowing is considered.The Buongiorno nanofluid model is taken care of assuming the fluid to be dilute and we find Brownian motion and thermophoresis have dominant role on nanoscale unit.The primitive mass conservation equation,radial,tangential and axial momentum,heat,nano-particle concentration and micro-organism density function are developed in a cylindrical polar coordinate system with appropriate wall(disk surface)and free stream boundary conditions.This highly nonlinear,strongly coupled system of unsteady partial differential equations is normalized with the classical von Kármán and other transformations to render the boundary value problem into an ordinary differential system.The emerging 11th order system features an extensive range of dimensionless flow parameters,i.e.,disk stretching rate,Brownian motion,thermophoresis,bioconvection Lewis number,unsteadiness parameter,ordinary Lewis number,Prandtl number,mass convective Biot number,Péclet number and Stefan blowing parameter.Solutions of the system are obtained with developed semi-analytical technique,i.e.,Adomian decomposition method.Validation of the said problem is also conducted with earlier literature computed by Runge-Kutta shooting technique. 展开更多
关键词 nanofluids BIOCONVECTION rotating disk bioreactors von Kármán swirling flow Stefan blowing adomian decomposition method(ADM)
下载PDF
Adomian decomposition method and Padé approximants for solving the Blaszak-Marciniak lattice 被引量:1
12
作者 杨沛 陈勇 李志斌 《Chinese Physics B》 SCIE EI CAS CSCD 2008年第11期3953-3964,共12页
The Adomian decomposition method (ADM) and Pade approximants are combined to solve the well-known Blaszak-Marciniak lattice, which has rich mathematical structures and many important applications in physics and math... The Adomian decomposition method (ADM) and Pade approximants are combined to solve the well-known Blaszak-Marciniak lattice, which has rich mathematical structures and many important applications in physics and mathematics. In some cases, the truncated series solution of ADM is adequate only in a small region when the exact solution is not reached. To overcome the drawback, the Pade approximants, which have the advantage in turning the polynomials approximation into a rational function, are applied to the series solution to improve the accuracy and enlarge the convergence domain. By using the ADM-Pade technique, the soliton solutions of the Blaszak-Marciniak lattice are constructed with better accuracy and better convergence than by using the ADM alone. Numerical and figurative illustrations show that it is a promising tool for solving nonlinear problems. 展开更多
关键词 adomian decomposition method Pade approximants Blaszak-Marciniak lattice soliton solution
下载PDF
Adomian Decomposition Method and Padé Approximants for Nonlinear Differential-Difference Equations 被引量:1
13
作者 LIU Yan-Ming CHEN Yong 《Communications in Theoretical Physics》 SCIE CAS CSCD 2009年第4期581-587,共7页
Combining Adomian decomposition method (ADM) with Pade approximants, we solve two differentiaidifference equations (DDEs): the relativistic Toda lattice equation and the modified Volterra lattice equation. With t... Combining Adomian decomposition method (ADM) with Pade approximants, we solve two differentiaidifference equations (DDEs): the relativistic Toda lattice equation and the modified Volterra lattice equation. With the help of symbolic computation Maple, the results obtained by ADM-Pade technique are compared with those obtained by using ADM alone. The numerical results demonstrate that ADM-Pade technique give the approximate solution with faster convergence rate and higher accuracy and relative in larger domain of convergence than using ADM. 展开更多
关键词 adomian decomposition method Pade approximants relativistic Toda lattice equation modified Volterra lattice equation
下载PDF
Solitary Wave Solutions of Discrete Complex Ginzburg-Landau Equation by Modified Adomian Decomposition Method 被引量:1
14
作者 WANG Yue-Yue DAI Chao-Qing ZHANG Jie-Fang 《Communications in Theoretical Physics》 SCIE CAS CSCD 2009年第1期81-89,共9页
In this paper, exact and numerical solutions are calculated for discrete complex Ginzburg-Landau equation with initial condition by considering the modified Adomian decomposition method (mADM), which is an efficient... In this paper, exact and numerical solutions are calculated for discrete complex Ginzburg-Landau equation with initial condition by considering the modified Adomian decomposition method (mADM), which is an efficient method and does not need linearization, weak nonlinearity assumptions or perturbation theory. The numerical solutions are also compared with their corresponding analytical solutions. It is shown that a very good approximation is achieved with the analytical solutions. Finally, the modulational instability is investigated and the corresponding condition is given. 展开更多
关键词 discrete complex Ginzburg-Landau equation modified adomian decomposition method solitary wave solutions modulational instability
下载PDF
Analytical solution of fractionally damped beam by Adomian decomposition method 被引量:1
15
作者 梁祖峰 唐晓艳 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2007年第2期219-228,共10页
The analytical solution of a viscoelastic continuous beam whose damping characteristics are described in terms of a fractional derivative of arbitrary order was derived by means of the AdoInian decomposition method. T... The analytical solution of a viscoelastic continuous beam whose damping characteristics are described in terms of a fractional derivative of arbitrary order was derived by means of the AdoInian decomposition method. The solution contains arbitrary initial conditions and zero input. For specific analysis, the initial conditions were assumed homogeneous, and the input force was treated as a special process with a particular beam. Two simple cases, step and impulse function responses, were considered respectively. Subsequently, some figures were plotted to show the displacement of the beam under different sets of parameters including different orders of the fractional derivatives. 展开更多
关键词 viscoelastic beam fractional derivative adomian decomposition method vibration
下载PDF
The Modified Adomian Decomposition Method for Nonlinear Fractional Boundary Value Problems 被引量:1
16
作者 WANG Jie 《Chinese Quarterly Journal of Mathematics》 CSCD 2012年第2期238-245,共8页
We use the modified Adomian decomposition method(ADM) for solving the nonlinear fractional boundary value problem {D α0+u(x)=f(x,u(x)) ,0〈x〈1,3〈α≤4u(0)=α0, u″(0)=α2u(1)=β0,u″(1)β2where Dα... We use the modified Adomian decomposition method(ADM) for solving the nonlinear fractional boundary value problem {D α0+u(x)=f(x,u(x)) ,0〈x〈1,3〈α≤4u(0)=α0, u″(0)=α2u(1)=β0,u″(1)β2where Dα 0 +u is Caputo fractional derivative and α0, α2, β0, β2 is not zero at all, and f : [0, 1] × R→R is continuous. The calculated numerical results show reliability and efficiency of the algorithm given. The numerical procedure is tested on lineax and nonlinear problems. 展开更多
关键词 Caputo fractional derivative adomian decomposition method differential equations
下载PDF
The Adomian Decomposition Method for Solving Volterra-Fredholm Integral Equation Using Maple 被引量:1
17
作者 Hunida M. Malaikah 《Applied Mathematics》 2020年第8期779-787,共9页
In this paper, Adomian decomposition method (ADM) is used to solve the Volterra-Fredholm integral equation. A number of examples have been presented to explain the numerical results, which is the comparison between th... In this paper, Adomian decomposition method (ADM) is used to solve the Volterra-Fredholm integral equation. A number of examples have been presented to explain the numerical results, which is the comparison between the exact solution and the numerical solution, and it is found through the tables and the amount of error between the exact solution and the numerical solution, it is very small and almost non-existent and is also illustrated through the graph how the exact solution of completely applies to the numerical solution This proves the accuracy of the method, which is the Adomian decomposition method (ADM) for solving the Volterra Fredholm integral equation using Maple 18. And that this method is characterized by ease, speed and great accuracy in obtaining numerical results. 展开更多
关键词 Volterra-Fredholm Integral Equation adomian decomposition Method Maple18
下载PDF
The Adomian Decomposition Method for Solving Nonlinear Partial Differential Equation Using Maple 被引量:1
18
作者 Dalal Adnan Maturi Honaida Mohammed Malaikah 《Advances in Pure Mathematics》 2021年第6期595-603,共9页
The nonlinear partial differential equation is solved using the Adomian decomposition method (ADM) in this article. A number of examples have been provided to illustrate the numerical results, which is the comparison ... The nonlinear partial differential equation is solved using the Adomian decomposition method (ADM) in this article. A number of examples have been provided to illustrate the numerical results, which is the comparison of the exact and numerical solutions, and it has been discovered through the tables that the amount of error between the exact and numerical solutions is very small and almost non-existent, and the graph also shows how the exact solution of absolutely applies to the numerical solution. This demonstrates the precision of the Adomian decomposition method (ADM) for solving the nonlinear partial differential equation with Maple18. And that in terms of obtaining numerical results, this approach is characterized by ease, speed, and high accuracy. 展开更多
关键词 Nonlinear Partial Differential Equation adomian decomposition Method Maple18
下载PDF
On the Adomian Decomposition Method for Solving PDEs
19
作者 ZHU SONG-PING LEE JONU 《Communications in Mathematical Research》 CSCD 2016年第2期151-166,共16页
In this paper, we explore some issues related to adopting the Adomian decomposition method (ADM) to solve partial differential equations (PDEs), particularly linear diffusion equations. Through a proposition, we s... In this paper, we explore some issues related to adopting the Adomian decomposition method (ADM) to solve partial differential equations (PDEs), particularly linear diffusion equations. Through a proposition, we show that extending the ADM from ODEs to PDEs poses some strong requirements on the initial and boundary conditions, which quite often are violated for problems encountered in engineering, physics and applied mathematics. We then propose a modified approach, based on combining the ADM with the Fourier series decomposition, to provide solutions for those problems when these conditions are not met. In passing, we shall also present an argument that would address a long-term standing "pitfall" of the original ADM and make this powerful approach much more rigorous in its setup. Numerical examples are provided to show that our modified approach can be used to solve any linear diffusion equation (homogeneous or non-homogeneous), with reasonable smoothness of the initial and boundary data. 展开更多
关键词 adomian decomposition method non-smooth initial condition linearPDEs
下载PDF
Adomian Decomposition Method for Nonlinear Differential-Difference Equation
20
作者 WU Lei ZONG Feng-De ZHANG Jie-Fang Institute of Nonlinear Physics,Zhejiang Normal University,Jinhua 321004,China 《Communications in Theoretical Physics》 SCIE CAS CSCD 2007年第12期983-986,共4页
Adomian decomposition method is applied to find the analytical and numerical solutions for the discretizedmKdV equation.A numerical scheme is proposed to solve the long-time behavior of the discretized mKdV equation.T... Adomian decomposition method is applied to find the analytical and numerical solutions for the discretizedmKdV equation.A numerical scheme is proposed to solve the long-time behavior of the discretized mKdV equation.The procedure presented here can be used to solve other differential-difference equations. 展开更多
关键词 adomian decomposition method discretized nonlinear equation
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部