The urea nitrogen adsorbent of complex type, which consists of chitosan coated dialdehyde cellulose (CDAC) and immobilized urease in gelatin membrane (IE), was prepared. The cellulose, the dialdehyde cellulose (...The urea nitrogen adsorbent of complex type, which consists of chitosan coated dialdehyde cellulose (CDAC) and immobilized urease in gelatin membrane (IE), was prepared. The cellulose, the dialdehyde cellulose (DAC) and the CDAC were characterized by scanning electronic microscope. The results indicate that the cellulose C2-C3 bond was broken under the oxidation of periodate and it was oxidated to DAC. The DAC was coated with chitosan and the CDAC was obtained. The adsorption of urea nitrogen onto the adsorbent in Na2HPO4-NaH2PO4 buffer solution was studied in batch system. The effects of the experiment parameters, including degree of oxidation of CDAC, initial urea nitrogen concentration, pH and temperature, on the adsorption capacity of urea nitrogen onto the adsorbent at CDAC/IE weight ratio 10:1 were investigated. The results indicate that these parameters affected significantly the adsorption capacity. The adsorption capacity of urea nitrogen onto the adsorbent was 36.7 mg/g at the degree of oxidation of CDAC 88%, initial urea nitrogen concentration 600 mg/L, pH 7.4 and temperature 37℃.展开更多
This study focuses on the effects of p H and fluoride at different molar ratios of fluoride to Al(R F:Al) on the removal of cadmium(Cd^(2+)) and phosphate by Al coagulation. Fluoride at R F:Al≥ 3:1 inhibits...This study focuses on the effects of p H and fluoride at different molar ratios of fluoride to Al(R F:Al) on the removal of cadmium(Cd^(2+)) and phosphate by Al coagulation. Fluoride at R F:Al≥ 3:1 inhibits the removal of Cd over wide Al dose ranges from 5 to 10 mg/L as Al. The removal of phosphate decreases significantly at high R F:Al of 10:1 whereas at lowered R F:Al(i.e., ≤ 6:1), an adverse effect is observed only at insufficient Al doses below 2 mg/L. Fluoride shows inhibitive effects towards the removal of Cd at p H 7 and 8 and that of phosphate at p H 6. Fluoride decreases the ζ-potential in both systems, and the decreasing extent is positively correlated to the elevated R F:Al. The Al fluoride interactions include the formation of Al-F complexes and the adsorption of fluoride onto Al(OH)3 precipitates, i.e., the formation of Al(OH)n F m. Al-F complex formation inhibits Al hydrolysis and increases residual Al levels, and a more significant increase was observed at lower p H. Al-F complexes at high R F:Al complicate the coagulation behavior of Al towards both negative and positive ionic species. Moreover, fluoride at low R F:Al shows little effect on Al coagulation behavior towards Cd^2+and phosphate, and the spent defluoridation adsorbent,i.e., aluminum(Al) hydro(oxide) with adsorbed fluoride at R F:Al of below 0.1:1, may be reclaimed as a coagulant after being dissolved.展开更多
基金SUPPORTED BY NATURAL SCIENCE FOUNDATION OF TIANJIN ( NO. 033802011).
文摘The urea nitrogen adsorbent of complex type, which consists of chitosan coated dialdehyde cellulose (CDAC) and immobilized urease in gelatin membrane (IE), was prepared. The cellulose, the dialdehyde cellulose (DAC) and the CDAC were characterized by scanning electronic microscope. The results indicate that the cellulose C2-C3 bond was broken under the oxidation of periodate and it was oxidated to DAC. The DAC was coated with chitosan and the CDAC was obtained. The adsorption of urea nitrogen onto the adsorbent in Na2HPO4-NaH2PO4 buffer solution was studied in batch system. The effects of the experiment parameters, including degree of oxidation of CDAC, initial urea nitrogen concentration, pH and temperature, on the adsorption capacity of urea nitrogen onto the adsorbent at CDAC/IE weight ratio 10:1 were investigated. The results indicate that these parameters affected significantly the adsorption capacity. The adsorption capacity of urea nitrogen onto the adsorbent was 36.7 mg/g at the degree of oxidation of CDAC 88%, initial urea nitrogen concentration 600 mg/L, pH 7.4 and temperature 37℃.
基金supported by the National Natural Science Foundation of China (Nos. 21177143, 21177144)the key project of the National " 863 " High-Tech R&D Program of China (No. 2012AA062604)the support of the Beijing Nova Program (No. 2013054)
文摘This study focuses on the effects of p H and fluoride at different molar ratios of fluoride to Al(R F:Al) on the removal of cadmium(Cd^(2+)) and phosphate by Al coagulation. Fluoride at R F:Al≥ 3:1 inhibits the removal of Cd over wide Al dose ranges from 5 to 10 mg/L as Al. The removal of phosphate decreases significantly at high R F:Al of 10:1 whereas at lowered R F:Al(i.e., ≤ 6:1), an adverse effect is observed only at insufficient Al doses below 2 mg/L. Fluoride shows inhibitive effects towards the removal of Cd at p H 7 and 8 and that of phosphate at p H 6. Fluoride decreases the ζ-potential in both systems, and the decreasing extent is positively correlated to the elevated R F:Al. The Al fluoride interactions include the formation of Al-F complexes and the adsorption of fluoride onto Al(OH)3 precipitates, i.e., the formation of Al(OH)n F m. Al-F complex formation inhibits Al hydrolysis and increases residual Al levels, and a more significant increase was observed at lower p H. Al-F complexes at high R F:Al complicate the coagulation behavior of Al towards both negative and positive ionic species. Moreover, fluoride at low R F:Al shows little effect on Al coagulation behavior towards Cd^2+and phosphate, and the spent defluoridation adsorbent,i.e., aluminum(Al) hydro(oxide) with adsorbed fluoride at R F:Al of below 0.1:1, may be reclaimed as a coagulant after being dissolved.