Elastic behaviors of protein-like chains are investigated by Pruned-Enriched-Rosenbluth method and modified orientation-dependent monomer-monomer interactions model. The protein-like chain is pulled away from the attr...Elastic behaviors of protein-like chains are investigated by Pruned-Enriched-Rosenbluth method and modified orientation-dependent monomer-monomer interactions model. The protein-like chain is pulled away from the attractive surface slowly with elastic force acting on it. Strong adsorption interaction and no adsorption interaction are both considered. We calculate the characteristic ratio and shape factor of protein-like chains in the process of elongation. The conformation change of the protein-like chain is well depicted. The shape of chain changes from “rod” to “sphere” at the beginning of elongation. Then, the shape changes from “sphere” to “rod”. In the end, the shape becomes a “sphere” as the chain leaves away from the surface. In the meantime, we discuss average Helmoholtz free energy per bond, average energy per bond, average adsorbed energy per bond, average α-helical energy per bond, average β-sheet energy per bond and average contact energy per bond. On the other hand, elastic force is also studied. It is found that elastic force has a long plateau during the tensile elongation when there exists adsorption interaction. This result is consistent with SMFS experiment of general polymers. Energy contribution to elastic force and contact energy contribution to elastic force are both discussed. These investigations can provide some insights into the elastic behaviors of adsorbed protein chains.展开更多
In this paper,the content and density of adsorbed water in fine-grained soil are determined.According to the test results,the calculation method of compaction degree of the solid-phase and void ration of soil is impro...In this paper,the content and density of adsorbed water in fine-grained soil are determined.According to the test results,the calculation method of compaction degree of the solid-phase and void ration of soil is improved.Four kinds of fine-grained soils from different regions in China were selected,and the adsorbed water content and density of four kinds of fine-grained soils were determined by thermogravimetry and volumetric flask method.Furthermore,SEM and XRD experiments were used to analyze the differences in the ability of each soil sample to absorb water.In order to study the compression characteristics of adsorbed water,four saturated soil samples were tested by consolidation method.The results show that the desorption temperature range of the adsorbed water and its density were equal to 100−115℃and 1.30 g/cm^(3),respectively.Adsorbed water plays a positive role in keeping the compressibility of fine-grained soil at a low rate when it has high water content.Besides,adsorbed water can be a stable parameter and is difficult to discharge during the operation period of subgrade.The settlement of fine-grained soil embankment is predicted by engineering example,and compared with the result of conventional calculation method.The results show that it is more close to the field monitoring results by using the improved void ratio of soil as the parameter.展开更多
A series of oxygen deficient perovskite supported palladium catalysts were prepared by the “solid phase crystallization'(spc) method and investigated with XRD, TPR, TPD, TEM, XPS, BET analysis and CO oxidation. I...A series of oxygen deficient perovskite supported palladium catalysts were prepared by the “solid phase crystallization'(spc) method and investigated with XRD, TPR, TPD, TEM, XPS, BET analysis and CO oxidation. It was found that Pd/perovskite catalysts synthesized by the spc method were more active for CO oxidation than the calcined LaCo 0 95 Pd 0 05 O 3, where Pd dispersed in the solid solution. H 2 reducing treatment in the spc method could yield not only high dispersed fine Pd particles on the perovskite surface but also oxygen deficient structure. In these perovskite supported Pd catalysts, oxygen vacancies adsorbed, activated and supplied oxygen to the active Pd sites, where the oxidation occurred with adsorbed CO. The high activities were due to the cooperative action of Pd and oxygen vacancies.展开更多
In recent years,great breakthroughs have been made in the exploration and development of natural gas in deep coal-rock reservoirs in Junggar,Ordos and other basins in China.In view of the inconsistency between the ind...In recent years,great breakthroughs have been made in the exploration and development of natural gas in deep coal-rock reservoirs in Junggar,Ordos and other basins in China.In view of the inconsistency between the industrial and academic circles on this new type of unconventional natural gas,this paper defines the concept of"coal-rock gas"on the basis of previous studies,and systematically analyzes its characteristics of occurrence state,transport and storage form,differential accumulation,and development law.Coal-rock gas,geologically unlike coalbed methane in the traditional sense,occurs in both free and adsorbed states,with free state in abundance.It is generated and stored in the same set of rocks through short distance migration,occasionally with the accumulation from other sources.Moreover,coal rock develops cleat fractures,and the free gas accumulates differentially.The coal-rock gas reservoirs deeper than 2000 m are high in pressure,temperature,gas content,gas saturation,and free-gas content.In terms of development,similar to shale gas and tight gas,coal-rock gas can be exploited by natural formation energy after the reservoirs connectivity is improved artificially,that is,the adsorbed gas is desorbed due to pressure drop after the high-potential free gas is recovered,so that the free gas and adsorbed gas are produced in succession for a long term without water drainage for pressure drop.According to buried depth,coal rank,pressure coefficient,reserves scale,reserves abundance and gas well production,the classification criteria and reserves/resources estimation method of coal-rock gas are presented.It is preliminarily estimated that the coal-rock gas in place deeper than 2000 m in China exceeds 30×10^(12)m^(3),indicating an important strategic resource for the country.The Ordos,Sichuan,Junggar and Bohai Bay basins are favorable areas for large-scale enrichment of coal-rock gas.The paper summarizes the technical and management challenges and points out the research directions,laying a foundation for the management,exploration,and development of coal-rock gas in China.展开更多
基金ACKNOWLEDGMENT This work was supported by the National Natural Science Foundation of China (No.20904047).
文摘Elastic behaviors of protein-like chains are investigated by Pruned-Enriched-Rosenbluth method and modified orientation-dependent monomer-monomer interactions model. The protein-like chain is pulled away from the attractive surface slowly with elastic force acting on it. Strong adsorption interaction and no adsorption interaction are both considered. We calculate the characteristic ratio and shape factor of protein-like chains in the process of elongation. The conformation change of the protein-like chain is well depicted. The shape of chain changes from “rod” to “sphere” at the beginning of elongation. Then, the shape changes from “sphere” to “rod”. In the end, the shape becomes a “sphere” as the chain leaves away from the surface. In the meantime, we discuss average Helmoholtz free energy per bond, average energy per bond, average adsorbed energy per bond, average α-helical energy per bond, average β-sheet energy per bond and average contact energy per bond. On the other hand, elastic force is also studied. It is found that elastic force has a long plateau during the tensile elongation when there exists adsorption interaction. This result is consistent with SMFS experiment of general polymers. Energy contribution to elastic force and contact energy contribution to elastic force are both discussed. These investigations can provide some insights into the elastic behaviors of adsorbed protein chains.
基金Project(51978085)supported by the National Natural Science Foundation of ChinaProject(K2019G045)supported by the Science and Technology Research and Development Plan of China National Railway Group Co.,Ltd.Project(201808430102)supported by the China Scholarship Council。
文摘In this paper,the content and density of adsorbed water in fine-grained soil are determined.According to the test results,the calculation method of compaction degree of the solid-phase and void ration of soil is improved.Four kinds of fine-grained soils from different regions in China were selected,and the adsorbed water content and density of four kinds of fine-grained soils were determined by thermogravimetry and volumetric flask method.Furthermore,SEM and XRD experiments were used to analyze the differences in the ability of each soil sample to absorb water.In order to study the compression characteristics of adsorbed water,four saturated soil samples were tested by consolidation method.The results show that the desorption temperature range of the adsorbed water and its density were equal to 100−115℃and 1.30 g/cm^(3),respectively.Adsorbed water plays a positive role in keeping the compressibility of fine-grained soil at a low rate when it has high water content.Besides,adsorbed water can be a stable parameter and is difficult to discharge during the operation period of subgrade.The settlement of fine-grained soil embankment is predicted by engineering example,and compared with the result of conventional calculation method.The results show that it is more close to the field monitoring results by using the improved void ratio of soil as the parameter.
文摘A series of oxygen deficient perovskite supported palladium catalysts were prepared by the “solid phase crystallization'(spc) method and investigated with XRD, TPR, TPD, TEM, XPS, BET analysis and CO oxidation. It was found that Pd/perovskite catalysts synthesized by the spc method were more active for CO oxidation than the calcined LaCo 0 95 Pd 0 05 O 3, where Pd dispersed in the solid solution. H 2 reducing treatment in the spc method could yield not only high dispersed fine Pd particles on the perovskite surface but also oxygen deficient structure. In these perovskite supported Pd catalysts, oxygen vacancies adsorbed, activated and supplied oxygen to the active Pd sites, where the oxidation occurred with adsorbed CO. The high activities were due to the cooperative action of Pd and oxygen vacancies.
基金Supported by the Prospective and Basic Research Project of PetroChina(2021DJ23)。
文摘In recent years,great breakthroughs have been made in the exploration and development of natural gas in deep coal-rock reservoirs in Junggar,Ordos and other basins in China.In view of the inconsistency between the industrial and academic circles on this new type of unconventional natural gas,this paper defines the concept of"coal-rock gas"on the basis of previous studies,and systematically analyzes its characteristics of occurrence state,transport and storage form,differential accumulation,and development law.Coal-rock gas,geologically unlike coalbed methane in the traditional sense,occurs in both free and adsorbed states,with free state in abundance.It is generated and stored in the same set of rocks through short distance migration,occasionally with the accumulation from other sources.Moreover,coal rock develops cleat fractures,and the free gas accumulates differentially.The coal-rock gas reservoirs deeper than 2000 m are high in pressure,temperature,gas content,gas saturation,and free-gas content.In terms of development,similar to shale gas and tight gas,coal-rock gas can be exploited by natural formation energy after the reservoirs connectivity is improved artificially,that is,the adsorbed gas is desorbed due to pressure drop after the high-potential free gas is recovered,so that the free gas and adsorbed gas are produced in succession for a long term without water drainage for pressure drop.According to buried depth,coal rank,pressure coefficient,reserves scale,reserves abundance and gas well production,the classification criteria and reserves/resources estimation method of coal-rock gas are presented.It is preliminarily estimated that the coal-rock gas in place deeper than 2000 m in China exceeds 30×10^(12)m^(3),indicating an important strategic resource for the country.The Ordos,Sichuan,Junggar and Bohai Bay basins are favorable areas for large-scale enrichment of coal-rock gas.The paper summarizes the technical and management challenges and points out the research directions,laying a foundation for the management,exploration,and development of coal-rock gas in China.