A recyclable copper removal adsorbent was developed from diatomite and alu- minum sludge composite materials. The. effects of different formulas on the adsorption of Cu2~ under different conditions were discussed. The...A recyclable copper removal adsorbent was developed from diatomite and alu- minum sludge composite materials. The. effects of different formulas on the adsorption of Cu2~ under different conditions were discussed. The properties and rnicrostructures of the samples were characterized. The results showed that the optimum pH value, contacting time and raw materials proportion for copper removal are 6, 90 min and 40:60 (sludge: diatomite), respectively, The copper removal capacity could reach 0.46 mg/g at the initial copper concentration of 5 mg/L. There was no change in the composition of crystal phase before and after copper removal, so physical adsorption was dominant during the adsorption process.展开更多
Stringent regulations and environmental concerns make the production of clean fuels with low sulfur content compulsory for the petroleum refining industry.Because of ease of operation without high energy consumption,t...Stringent regulations and environmental concerns make the production of clean fuels with low sulfur content compulsory for the petroleum refining industry.Because of ease of operation without high energy consumption,the adsorption of sulfur compounds seems the most promising process.Central composite design was used to optimize parameters influencing the synthesis of dispersed carbon nanoparticles(CNPs),a new class of sorbents,in order to obtain an excellent adsorbent for desulfurization of liquid fuel.The optimized dispersed CNPs,which are immiscible in liquid fuel,can effectively adsorb different benzothiophenic compounds.Equilibrium adsorption was achieved within 2 min for benzothiophene,dibenzothiophene,and 4,6-dimethyldibenzothiophene with removal efficiency values of 75 %,83 %,and 52 %,respectively.The rate of desulfurization by the prepared CNPs in the present work is seven times higher than the previously reported CNPs.Optimized CNPs were characterized by different techniques.Finally,the effect of the mass of CNPs on the removal efficiency was studied as well.展开更多
A series of mesoporous silicate adsorbents with superior adsorption performance for hazardous chlortetracycline(CTC) were sucessfully prepared via a facile one-pot hydrothermal reaction using low-cost illite/smectit...A series of mesoporous silicate adsorbents with superior adsorption performance for hazardous chlortetracycline(CTC) were sucessfully prepared via a facile one-pot hydrothermal reaction using low-cost illite/smectite(IS) clay,sodium silicate and magnesium sulfate as the starting materials.In this process,IS clay was "teared up" and then "rebuilt" as new porous silicate adsorbent with high specific surface area of 363.52 m^2/g(about 8.7 folds higher than that of IS clay) and very negative Zeta potential(- 34.5 mV).The inert Si- O- Si(Mg,Al) bonds in crystal framework of IS were broken to form Si(Al)- O^- groups with good adsorption activity,which greatly increased the adsorption sites served for holding much CTC molecules.Systematic evaluation on adsorption properties reveals the optimal silicate adsorbent can adsorb 408.81 mg/g of CTC(only 159.7 mg/g for raw IS clay) and remove 99.3%(only 46.5%for raw IS clay) of CTC from 100 mg/L initial solution(pH 3.51;adsorption temperature 30℃;adsorbent dosage,3 g/L).The adsorption behaviors of CTC onto the adsorbent follows the Langmuir isotherm model,Temkin equation and pseudo second-order kinetic model.The mesopore adsorption,electrostatic attraction and chemical association mainly contribute to the enhanced adsorption properties.As a whole,the high-efficient silicate adsorbent could be candidates to remove CTC from the wastewater with high amounts of CTC.展开更多
The aim of this study is to investigate the possible use of a 1,2-dimethylimidazolium ionic liquid,2,2-bis((1,2-dimethylimidazolium)methyl)propane-1,3-diol hexafluorophosphate(1),as an adsorbent to selectively r...The aim of this study is to investigate the possible use of a 1,2-dimethylimidazolium ionic liquid,2,2-bis((1,2-dimethylimidazolium)methyl)propane-1,3-diol hexafluorophosphate(1),as an adsorbent to selectively remove aromatic heterocyclic sulfur compounds from model fuels.The result indicates that adsorbent 1 is insoluble in model fuels.The spent IL saturated sulfur compounds could be regenerated by a water dilution process.The influence of extraction time or temperature as well as the molar ratio of 1 to aromatic heterocyclic sulfur compound was also studied.展开更多
Arsenic is one of the most common inorganic contaminants in groundwater worldwide,mainly due to the release of naturally occurring arsenic from aquifer sediments(Amini et al.,2008;Li and Cai,2015;Rahman et al.,2015)...Arsenic is one of the most common inorganic contaminants in groundwater worldwide,mainly due to the release of naturally occurring arsenic from aquifer sediments(Amini et al.,2008;Li and Cai,2015;Rahman et al.,2015).Naturally occurring arsenic exists predominantly in arsenate and arsenite species in groundwater.展开更多
Knowledge about heavy metal release from industrial solid wastes(ISWs) is crucial for better management of their environmental risks. This study was conducted to investigate the effect of organic and inorganic acids, ...Knowledge about heavy metal release from industrial solid wastes(ISWs) is crucial for better management of their environmental risks. This study was conducted to investigate the effect of organic and inorganic acids, clay minerals, and nanoparticles(NPs) on the release of heavy metals from sugar factory waste, ceramic factory waste, leather factory waste, and stone cutting waste. The influence of the extractants on heavy metal release from these ISWs was in the following descending order: citric acid > oxalic acid > nitric acid≥ sulfuric acid > Ca Cl2. Addition of clay minerals and NPs as adsorbents decreased heavy metal release, which was significantly lower in NP-treated wastes than in the clay mineral-treated wastes. On the other hand, the presence of organic and inorganic acids increased heavy metal adsorption by NPs and clay minerals. These results suggest that NPs can be applied successfully in waste remediation,and organic and inorganic acids play an important role in the removal of heavy metals from the studied adsorbents.展开更多
基金Supported by the National Natural Science Foundation of China (No.51102047)Fujian Natural Science Foundation for Distinguished Youth Scholars (2012J06011)National Undergraduate Practice Innovation Plan (121038632)
文摘A recyclable copper removal adsorbent was developed from diatomite and alu- minum sludge composite materials. The. effects of different formulas on the adsorption of Cu2~ under different conditions were discussed. The properties and rnicrostructures of the samples were characterized. The results showed that the optimum pH value, contacting time and raw materials proportion for copper removal are 6, 90 min and 40:60 (sludge: diatomite), respectively, The copper removal capacity could reach 0.46 mg/g at the initial copper concentration of 5 mg/L. There was no change in the composition of crystal phase before and after copper removal, so physical adsorption was dominant during the adsorption process.
基金financial support from Bu-Ali Sina University was gratefully acknowledged
文摘Stringent regulations and environmental concerns make the production of clean fuels with low sulfur content compulsory for the petroleum refining industry.Because of ease of operation without high energy consumption,the adsorption of sulfur compounds seems the most promising process.Central composite design was used to optimize parameters influencing the synthesis of dispersed carbon nanoparticles(CNPs),a new class of sorbents,in order to obtain an excellent adsorbent for desulfurization of liquid fuel.The optimized dispersed CNPs,which are immiscible in liquid fuel,can effectively adsorb different benzothiophenic compounds.Equilibrium adsorption was achieved within 2 min for benzothiophene,dibenzothiophene,and 4,6-dimethyldibenzothiophene with removal efficiency values of 75 %,83 %,and 52 %,respectively.The rate of desulfurization by the prepared CNPs in the present work is seven times higher than the previously reported CNPs.Optimized CNPs were characterized by different techniques.Finally,the effect of the mass of CNPs on the removal efficiency was studied as well.
基金the National Natural Science Foundation of China(Nos.51403221 and 21377135)the Jiangsu Provincial Joint Innovation and Research Funding of Enterprises,Colleges and Institutes(No.BY2015056-01)+1 种基金the Huai'an Cooperative Research Project of the Enterprises,Colleges and Institutes(No.HAC2015005)the Youth Innovation Promotion Association CAS(No.2016370)for financial support of this research
文摘A series of mesoporous silicate adsorbents with superior adsorption performance for hazardous chlortetracycline(CTC) were sucessfully prepared via a facile one-pot hydrothermal reaction using low-cost illite/smectite(IS) clay,sodium silicate and magnesium sulfate as the starting materials.In this process,IS clay was "teared up" and then "rebuilt" as new porous silicate adsorbent with high specific surface area of 363.52 m^2/g(about 8.7 folds higher than that of IS clay) and very negative Zeta potential(- 34.5 mV).The inert Si- O- Si(Mg,Al) bonds in crystal framework of IS were broken to form Si(Al)- O^- groups with good adsorption activity,which greatly increased the adsorption sites served for holding much CTC molecules.Systematic evaluation on adsorption properties reveals the optimal silicate adsorbent can adsorb 408.81 mg/g of CTC(only 159.7 mg/g for raw IS clay) and remove 99.3%(only 46.5%for raw IS clay) of CTC from 100 mg/L initial solution(pH 3.51;adsorption temperature 30℃;adsorbent dosage,3 g/L).The adsorption behaviors of CTC onto the adsorbent follows the Langmuir isotherm model,Temkin equation and pseudo second-order kinetic model.The mesopore adsorption,electrostatic attraction and chemical association mainly contribute to the enhanced adsorption properties.As a whole,the high-efficient silicate adsorbent could be candidates to remove CTC from the wastewater with high amounts of CTC.
基金National Key Technology R and D Program (No.2011BAE06B05-4)China Postdoctoral Science Foundation (No.20070410169) for financial support
文摘The aim of this study is to investigate the possible use of a 1,2-dimethylimidazolium ionic liquid,2,2-bis((1,2-dimethylimidazolium)methyl)propane-1,3-diol hexafluorophosphate(1),as an adsorbent to selectively remove aromatic heterocyclic sulfur compounds from model fuels.The result indicates that adsorbent 1 is insoluble in model fuels.The spent IL saturated sulfur compounds could be regenerated by a water dilution process.The influence of extraction time or temperature as well as the molar ratio of 1 to aromatic heterocyclic sulfur compound was also studied.
文摘Arsenic is one of the most common inorganic contaminants in groundwater worldwide,mainly due to the release of naturally occurring arsenic from aquifer sediments(Amini et al.,2008;Li and Cai,2015;Rahman et al.,2015).Naturally occurring arsenic exists predominantly in arsenate and arsenite species in groundwater.
文摘Knowledge about heavy metal release from industrial solid wastes(ISWs) is crucial for better management of their environmental risks. This study was conducted to investigate the effect of organic and inorganic acids, clay minerals, and nanoparticles(NPs) on the release of heavy metals from sugar factory waste, ceramic factory waste, leather factory waste, and stone cutting waste. The influence of the extractants on heavy metal release from these ISWs was in the following descending order: citric acid > oxalic acid > nitric acid≥ sulfuric acid > Ca Cl2. Addition of clay minerals and NPs as adsorbents decreased heavy metal release, which was significantly lower in NP-treated wastes than in the clay mineral-treated wastes. On the other hand, the presence of organic and inorganic acids increased heavy metal adsorption by NPs and clay minerals. These results suggest that NPs can be applied successfully in waste remediation,and organic and inorganic acids play an important role in the removal of heavy metals from the studied adsorbents.