期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
Experimental and Numerical Research on Water Transport during Adsorption and Desorption in Cement-Based Materials
1
作者 Xiang Zhang Miao Su +3 位作者 Wenjie Yu Zhen Lei Jun Ren Juntong Qu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第8期1487-1507,共21页
The durability of cement-based materials is related to water transport and storage in their pore network under different humidity conditions.To understand the mechanism and characteristics of water adsorption and deso... The durability of cement-based materials is related to water transport and storage in their pore network under different humidity conditions.To understand the mechanism and characteristics of water adsorption and desorption processes from the microscopic scale,this study introduces different points of view for the pore space model generation and numerical simulation of water transport by considering the“ink-bottle”effect.On the basis of the pore structure parameters(i.e.,pore size distribution and porosity)of cement paste and mortar with water-binder ratios of 0.3,0.4 and 0.5 obtained via mercury intrusion porosimetry,randomly formed 3D pore space models are generated using two-phase transformation on Gaussian random fields and verified via image analysis method of mathematical morphology.Considering the Kelvin-Laplace equation and the influence of“ink-bottle”pores,two numerical calculation scenarios based on mathematical morphology are proposed and applied to the generated model to simulate the adsorption-desorption process.The simulated adsorption and desorption curves are close to those of the experiment,verifying the effectiveness of the developed model and methods.The obtained results characterize water transport in cement-based materials during the variation of relative humidity and further explain the hysteresis effect due to“ink-bottle”pores from the microscopic scale. 展开更多
关键词 Cement-based material adsorption and desorption ink-bottle effect pore space modeling mathematical morphology
下载PDF
Adsorption and desorption of Cu(Ⅱ) and Pb(Ⅱ) in paddy soils cultivated for various years in the subtropical China 被引量:22
2
作者 Liang Ma Renkou Xu Jun Jiang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2010年第5期689-695,共7页
The adsorption and desorption of Cu(Ⅱ) and Pb(Ⅱ) on upland red soil,and paddy soils which were originated from the upland soil and cultivated for 8,15,35 and 85 years,were investigated using the batch method.The... The adsorption and desorption of Cu(Ⅱ) and Pb(Ⅱ) on upland red soil,and paddy soils which were originated from the upland soil and cultivated for 8,15,35 and 85 years,were investigated using the batch method.The study showed that the organic matter content and cation exchange capacity (CEC) of the soils are important factors controlling the adsorption and desorption of Cu(Ⅱ) and Pb(Ⅱ).The 15-Year paddy soil had the highest adsorption capacity for Pb(Ⅱ),followed by the 35-Year paddy soil.Both the 35-Year paddy soil and 15-Year paddy soil adsorbed more Cu(Ⅱ) than the upland soil and other paddy soils.The 15-Year paddy soils exhibited the highest desorption percentage for both Cu(Ⅱ) and Pb(Ⅱ).These results are consistent with the trend for the CEC of the soils tested.The high soil CEC contributes not only to the adsorption of Cu(Ⅱ) and Pb(Ⅱ) but also to the electrostatic adsorption of the two heavy metals by the soils.Lower desorption percentages for Cu(Ⅱ) (36.7% to 42.2%) and Pb(Ⅱ) (50.4% to 57.9%) were observed for the 85-Year paddy soil.The highest content of organic matter in the soil was responsible for the low desorption percentages for the two metals because the formation of the complexes between the organic matter and the metals could increase the stability of the heavy metals in the soils. 展开更多
关键词 adsorption and desorption Cu(Ⅱ) Pb(Ⅱ) cultivation chronosequence paddy soil
下载PDF
Characteristics of isothermal adsorption and desorption of aluminum ion to/from humic acids 被引量:3
3
作者 WANG Qiang WEI Shiqiang +1 位作者 HUANG Yuming ZHANG Jinzhong 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2008年第5期579-584,共6页
The adsorption and desorption characteristics of Al^3+ to/from humic acids at different pH, ionic strength, and temperature were studied by the C-25 glucosan-gel chromatography method. The results showed that the max... The adsorption and desorption characteristics of Al^3+ to/from humic acids at different pH, ionic strength, and temperature were studied by the C-25 glucosan-gel chromatography method. The results showed that the maximum adsorption amount (Qmax) and adsorption constant (k) increased, whereas, the absolute value of standard thermodynamic molar free energy change (ΔGm^0) decreased with the increase of pH at constant ionic strength and temperature. With ionic strength increasing from 0 to 0.15 mol/L, Qmax, and k increased and the absolute value of ΔGm^0 decreased at constant pH and temperature. High temperature was unfavorable for the adsorption reaction, as indicated by the dramatic decrease of Qmax and the absolute value of ΔGm^0 with an increase in temperature. The standard thermodynamic molar free energy change (ΔGm^0) and the standard thermodynamic enthalpy change (ΔHm^0) of the adsorption reaction were both negative, suggesting that adsorption reaction was spontaneous and exothermic. The desorption rate of HA-Al^3+ complex accelerated with the decrease of pH, and a significant linear relationship could be obtained between pH and the desorption rates of Al^3+ from humic acids. These results demonstrated that the Al^3+ adsorption reaction was a "biphase" reaction, and adsorption occurred at both the interior and exterior adsorption sites of humic acids. 展开更多
关键词 adsorption and desorption characteristics Al^3+ humic acid
下载PDF
Adsorption and Desorption of Gold on the Magnetic Activated Carbon 被引量:3
4
作者 Chonglin WANG Qingcai LIU Xiaozhen CHENG and Zuhong SHEN (Institute of Metal Research, Academia Sinica, Shenyang, 110015, China)(To whom correspondence should be addressed) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1994年第2期151-153,共3页
Adsorption and desorption of gold on the magnetic activated carbon (MAC) were investigated The adsorption rate of gold is higher than that of conventional coconut carbon in cyanide leach solution The loading gold can ... Adsorption and desorption of gold on the magnetic activated carbon (MAC) were investigated The adsorption rate of gold is higher than that of conventional coconut carbon in cyanide leach solution The loading gold can be easily desorbed as coconut carbon. Crushed fine magnetic carbon can be selected by a magnetic separator, It is suggested that the MAC can be used in carbon-in-pulp (CIP)process for increasing the recovery rate of gold 展开更多
关键词 GOLD adsorption and desorption of Gold on the Magnetic Activated Carbon
下载PDF
A potential threat from biodegradable microplastics: mechanism of cadmium adsorption and desorption in the simulated gastrointestinal environment
5
作者 Timing Jiang Xiang Wu +9 位作者 Shushan Yuan Changfei Lai Shijie Bian Wenbo Yu Sha Liang Jingping Hu Liang Huang Huabo Duan Yafei Shi Jiakuan Yang 《Frontiers of Environmental Science & Engineering》 SCIE EI CSCD 2024年第2期63-75,共13页
It has been demonstrated that microplastics (MPs) can accumulate heavy metals from the environment and transfer them into organisms via the food chain. However, adsorption and desorption capacities for biodegradable M... It has been demonstrated that microplastics (MPs) can accumulate heavy metals from the environment and transfer them into organisms via the food chain. However, adsorption and desorption capacities for biodegradable MPs relative to those for conventional MPs remain poorly understood. In this study, cadmium (Cd(II)) adsorption and desorption characteristics of polylactic acid (PLA), a typical biodegradable MP, were investigated. Two conventional MPs, i.e., polypropylene (PP) and polyamide (PA) were used for comparison. The maximum Cd(II) adsorption capacities of the MPs studied in the adsorption experiments decreased in the order PA (0.96 ± 0.07 mg/g) > PLA (0.64 ± 0.04 mg/g) > PP (0.22 ± 0.03 mg/g). The Pseudo-second-order kinetic model and Freundlich isothermal model described the Cd(II) adsorption behaviors of PLA MPs well. X-ray photoelectron spectroscopy and two-dimensional Fourier transform infrared correlation spectroscopy analysis indicated that oxygen functional groups were the major and preferential binding sites of PLA MPs, which contributed to their high Cd(II) adsorption capacities. Simulated gastric and intestinal fluids both significantly enhanced the desorption capacities of the examined MPs. Notably, degradation of the PLA MPs during in vitro human digestion made the Cd(II) on the PLA MPs more bioaccessible (19% in the gastric phase and 62% in the intestinal phase) than Cd(II) on the PP and PA MPs. These results indicate the remarkable capacities of biodegradable MPs to accumulate Cd(II) and transfer it to the digestive system and show that biodegradable MPs might pose more severe threats to human health than conventional nonbiodegradable MPs. 展开更多
关键词 Biodegradable microplastics CADMIUM adsorption and desorption Gastrointestinal environment Two-dimensional correlation spectroscopy BIOACCESSIBILITY
原文传递
Adsorption and desorption characteristics of diphenylarsenicals in two contrasting soils 被引量:8
6
作者 Anan Wang Shixin Li +6 位作者 Ying Teng Wuxin Liu Longhua Wu Haibo Zhang Yujuan Huang Yongming Luo Peter Christie 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2013年第6期1172-1179,共8页
Diphenylarsinic acid (DPAA) is formed during the leakage of aromatic arsenic chemical weapons in soils, is persistent in nature, and results in arsenic contamination in the field. The adsorption and desorption chara... Diphenylarsinic acid (DPAA) is formed during the leakage of aromatic arsenic chemical weapons in soils, is persistent in nature, and results in arsenic contamination in the field. The adsorption and desorption characteristics of DPAA were investigated in two typical Chinese soils, an Acrisol (a variable-charge soil) and a Phaeozem (a constant-charge soil). Their thermodynamics and some of the factors influencing them (i.e., initial pH value, ionic strength and phosphate) were also evaluated using the batch method in order to understand the environmental fate of DPAA in soils. The results indicate that Acrisol had a stronger adsorption capacity for DPAA than Phaeozem. Soil DPAA adsorption was a spontaneous and endothermic process and the amount of DPAA adsorbed was affected significantly by variation in soil pH and phosphate. In contrast, soil organic matter and ionic strength had no significant effect on adsorption. This suggests that DPAA adsorption may be due to specific adsorption on soil mineral surfaces. Therefore, monitoring the fate of DPAA in soils is recommended in areas contaminated by leakage from chemical weapons. 展开更多
关键词 diphenylarsinic acid adsorption and desorption chemical weapons residual soil contamination
原文传递
Adsorption and desorption of Cu2+ on paddy soil aggregates pretreated with different levels of phosphate
7
作者 Jun Dai Wenqin Wang +2 位作者 Wenchen Wu Jianbo Gao Changxun Dong 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2017年第5期311-320,共10页
Interactions between anions and cations are important for understanding the behaviors of chemical pollutants and their potential risks in the environment.Here we prepared soil aggregates of a yellow paddy soil from th... Interactions between anions and cations are important for understanding the behaviors of chemical pollutants and their potential risks in the environment.Here we prepared soil aggregates of a yellow paddy soil from the Taihu Lake region,and investigated the effects of phosphate(P) pretreatment on adsorption-desorption of Cu2+ of soil aggregates,free iron oxyhydrates-removed soil aggregates,goethite,and kaolinite with batch adsorption method.The results showed that Cu2+ adsorption was reduced on the aggregates pretreated with low concentrations of P,and promoted with high concentrations of P,showing a V-shaped change.Compared with the untreated aggregates,the adsorption capacity of Cu2+ was reduced when P application rates were lower than 260,220,130 and110 mg/kg for coarse,clay,silt and fine sand fractions,respectively.On the contrary,the adsorption capacity of Cu2+ was higher on P-pretreated soil aggregates than on the control ones when P application rates were greater than those values.However,the desorption of Cu2+ was enhanced at low levels of P,but suppressed at high levels of P,displaying an inverted V-shaped change over P adsorption.The Cu2+ adsorption by the aggregate particles with and without P pretreatments was well described by the Freundlich equation.Similar results were obtained on P-pretreated goethite.However,such P effects on Cu2+adsorption-desorption were not observed on kaolinite and free iron oxyhydrates-removed soil aggregates.The present results indicate that goethite is one of the main soil substances responsible for the P-induced promotion and inhibition of Cu2+ adsorption. 展开更多
关键词 Paddy soil Aggregates Copper (Ⅱ) adsorption and desorption
原文传递
Effect of Crop-Straw Derived Biochars on Pb(Ⅱ) Adsorption in Two Variable Charge Soils 被引量:6
8
作者 JIANG Tian-yu XU Ren-kou +1 位作者 GU Tian-xia JIANG Jun 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2014年第3期507-516,共10页
Two variable charge soils were incubated with biochars derived from straws of peanut, soybean, canola, and rice to investigate the effect of the biochars on their chemical properties and Pb(II) adsorption using batc... Two variable charge soils were incubated with biochars derived from straws of peanut, soybean, canola, and rice to investigate the effect of the biochars on their chemical properties and Pb(II) adsorption using batch experiments. The results showed soil cation exchange capacity (CEC) and pH significantly increased after 30 d of incubation with the biochars added. The incorporation of the biochars markedly increased the adsorption of Pb(II), and both the electrostatic and non-electrostatic adsorption mechanisms contributed to Pb(II) adsorption by the variable charge soils. Adsorption isotherms illustrated legume- straw derived biochars more greatly increased Pb(II) adsorption on soils through the non-electrostatic mechanism via the formation of surface complexes between Pb(II) and acid functional groups of the biochars than did non-legume straw biochars. The adsorption capacity of Pb(II) increased, while the desorption amount slightly decreased with the increasing suspension pH for the studied soils, especially in a high suspension pH, indicating that precipitation also plays an important role in immobilizing Pb(II) to the soils. 展开更多
关键词 crop-straw derived biochar Pb(II) adsorption and desorption variable charge soil surface chemical properties
下载PDF
Effect of sorbed and desorbed Zn(Ⅱ) on the growth of a green alga (Chlorella pyrenoidosa) 被引量:3
9
作者 CHANG Guo-hua CHEN Hao CHEN Hai-liu LI Wei PAN Gang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2007年第9期1028-1031,共4页
Toxic effect of Zn(II) on a green alga (Chlorella pyrenoidosa) in the presence of sepiolite and kaolinite was investigated. The Zn-free clays were found to have a negative impact on the growth of C. pyrenoidosa in... Toxic effect of Zn(II) on a green alga (Chlorella pyrenoidosa) in the presence of sepiolite and kaolinite was investigated. The Zn-free clays were found to have a negative impact on the growth of C. pyrenoidosa in comparison with control samples (without adding any clay or Zn(II)). When Zn(II) was added, the algae in the presence of clays could be better survived than the control samples, which was actually caused by a decrease in Zn(II) concentration in the solution owing to the adsorption of Zn(II) on the clays. When the solution system was diluted, the growth of algae could be further inhibited as compared to that in a system which had the same initial Zn(II) concentration as in the diluted system. This in fact resulted from desorption of Zn(II) from the zinc-contaminated clays, although the effect varied according to the different desorption capabilities of sepiolite and kaolinite. Therefore the adsorption and desorption processes of Zn(H) played an important part in its toxicity, and adsorption and desorption of pollutants on soils/sediments should be well considered in natural eco-environmental systems before their risk of toxicity to aquatic organisms was assessed objectively. 展开更多
关键词 Chlorella pyrenoidosa clays adsorption and desorption TOXICITY
下载PDF
Protecting Cell Walls from Binding Aluminum by Organic Acids Contributes to Aluminum Resistance 被引量:4
10
作者 Ya-Ying Li Yue-Jiao Zhang +2 位作者 Yuan Zhou Jian-Li Yang Shao-Jian Zheng 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2009年第6期574-580,共7页
Aluminum-induced secretion of organic acids from the root apex has been demonstrated to be one major AI resistance mechanism in plants. However, whether the organic acid concentration is high enough to detoxify AI in ... Aluminum-induced secretion of organic acids from the root apex has been demonstrated to be one major AI resistance mechanism in plants. However, whether the organic acid concentration is high enough to detoxify AI in the growth medium is frequently questioned. The genotypes of AI-resistant wheat, Cassia tora L. and buckwheat secrete malate, citrate and oxalate, respectively. In the present study we found that at a 35% inhibition of root elongation, the AI activities in the solution were 10, 20, and 50 μM with the corresponding malate, citrate, and oxalate exudation at the rates of 15, 20 and 21 nmol/cm2 per 12 h, respectively, for the above three plant species. When exogenous organic acids were added to ameliorate AI toxicity, twofold and eightfold higher oxalate and malate concentrations were required to produce the equal effect by citrate. After the root apical cell walls were isolated and preincubated in 1 mM malate, oxalate or citrate solution overnight, the total amount of AI adsorbed to the cell walls all decreased significantly to a similar level, implying that these organic acids own an equal ability to protect the cell walls from binding AI. These findings suggest that protection of cell walls from binding AI by organic acids may contribute significantly to AI resistance. 展开更多
关键词 adsorption and desorption aluminum toxicity cell wall CHELATION DETOXIFICATION organic acid.
原文传递
Effect of Ti(lll) Surface Defects on the Process of Photocatalytic Reduction of Hexavalent Chromium
11
作者 Hongxia Qin Yingying Bian +2 位作者 Yaxi Zhang Longfei Liu Zhenfeng Bian 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2017年第2期203-208,共6页
In this paper, the process of photocatalytic reduction of hexavalent chromium was investigated over Ti3+- modified TiO2 photocatalysts. The Ti3+ surface defects were repaired by annealing as-prepared sample at diffe... In this paper, the process of photocatalytic reduction of hexavalent chromium was investigated over Ti3+- modified TiO2 photocatalysts. The Ti3+ surface defects were repaired by annealing as-prepared sample at different temperatures to control the amount of Ti3+ sites. The samples were characterized by SEM, XRD, BET, UV-Vis absorption, EPR and XPS. The results showed Ti3+ defects were successfully doped in TiO2. The surface selective adsorption of hexavalent chromium [Cr2072 (Cr(VI))] and the desorption of trivalent chromium [Cr3+ (Cr(III))] were investigated during the process ofphotocatalytic reduction positive charges due to more Ti3+ defects on the surface show a Accordingly, the surface positive reduction of Cr(VI). charges controlled by the Ti3+ Zeta potential results presented that the increased significant improvement for adsorption of Cr(VI). defects play important roles in the photocatalytic 展开更多
关键词 Ti3+ modification titanium dioxide photocatalytic reduction hexavalent chromium surface selective adsorption and desorption
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部