期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Numerical simulation of influence of Langmuir adsorption constant on gas drainage radius of drilling in coal seam 被引量:10
1
作者 Lin Haifei Huang Meng +2 位作者 Li Shugang Zhang Chao Cheng Lianhua 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2016年第3期377-382,共6页
To determine reasonable distance of gas pre-drainage drillings in coal seams, a solid–gas coupling model that takes gas adsorption effect into account was constructed. In view of different adsorption constants,the pa... To determine reasonable distance of gas pre-drainage drillings in coal seams, a solid–gas coupling model that takes gas adsorption effect into account was constructed. In view of different adsorption constants,the paper conducted the numerical simulation of pre-drainage gas in drillings along coal seam, studied the relationship of adsorption constants and permeability, gas pressure, and effective drainage radius of coal seams, and applied the approach to the layout of pre-drainage gas drillings in coal seams. The results show that the permeability of coal seams is on the gradual increase with time, which is divided into three sections according to the increase rate: the drainage time 0–30 d is the sharp increase section;30–220 d is the gradual increase section; and the time above 200 d is the stable section. The permeability of coal seams is in negative linear and positive exponent relation with volume adsorption constant VLand pressure adsorption constant PL, respectively. The effective drainage radius is in negative linear relation with VLand in positive exponent relation with PL. Compared with the former design scheme, the engineering quantity of drilling could be reduced by 25%. 展开更多
关键词 Gas pre-drainage adsorption constant Permeability Drainage radius Solid–gas coupling
下载PDF
Prediction of Henry Constants and Adsorption Mechanism of Volatile Organic Compounds on Multi-Walled Carbon Nanotubes by Using Support Vector Regression 被引量:1
2
作者 程文德 蔡从中 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第4期143-146,共4页
Support vector regression (SVR) combined with particle swarm optimization for its parameter optimization is employed to establish a model for predicting the Henry constants of multi-walled carbon nanotubes (MWNTs)... Support vector regression (SVR) combined with particle swarm optimization for its parameter optimization is employed to establish a model for predicting the Henry constants of multi-walled carbon nanotubes (MWNTs) for adsorption of volatile organic compounds (VOCs). The prediction performance of SVR is compared with those of the model of theoretical linear salvation energy relationship (TLSER). By using leave-one-out cross validation of SVR test Henry constants for adsorption of 35 VOCs on MWNTs, the root mean square error is 0.080, the mean absolute percentage error is only 1.19~, and the correlation coefficient (R2) is as high as 0.997. Compared with the results of the TLSER model, it is shown that the estimated errors by SVR are ali smaller than those achieved by TLSER. It reveals that the generalization ability of SVR is superior to that of the TLSER model Meanwhile, multifactor analysis is adopted for investigation of the influences of each molecular structure descriptor on the Henry constants. According to the TLSER model, the adsorption mechanism of adsorption of carbon nanotubes of VOCs is mainly a result of van der Waals and interactions of hydrogen bonds. These can provide the theoretical support for the application of carbon nanotube adsorption of VOCs and can make up for the lack of experimental data. 展开更多
关键词 of is in SVR Prediction of Henry constants and adsorption Mechanism of Volatile Organic Compounds on Multi-Walled Carbon Nanotubes by Using Support Vector Regression VOCs MWNTS by on
下载PDF
Thermodynamic theory of flotation for a complex multiphase solid -liquid system and high-entropy flotation
3
作者 Shuming Wen 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第6期1177-1197,共21页
The flotation of complex solid–liquid multiphase systems involve interactions among multiple components,the core problem facing flotation theory.Meanwhile,the combined use of multicomponent flotation reagents to impr... The flotation of complex solid–liquid multiphase systems involve interactions among multiple components,the core problem facing flotation theory.Meanwhile,the combined use of multicomponent flotation reagents to improve mineral flotation has become an important issue in studies on the efficient use of refractory mineral resources.However,studying the flotation of complex solid–liquid systems is extremely difficult,and no systematic theory has been developed to date.In addition,the physical mechanism associated with combining reagents to improve the flotation effect has not been unified,which limits the development of flotation theory and the progress of flotation technology.In this study,we applied theoretical thermodynamics to a solid–liquid flotation system and used changes in the entropy and Gibbs free energy of the reagents adsorbed on the mineral surface to establish thermodynamic equilibrium equations that de-scribe interactions among various material components while also introducing adsorption equilibrium constants for the flotation reagents adsorbed on the mineral surface.The homogenization effect on the mineral surface in pulp solution was determined using the chemical potentials of the material components of the various mineral surfaces required to maintain balance.The flotation effect can be improved through synergy among multicomponent flotation reagents;its physical essence is the thermodynamic law that as the number of compon-ents of flotation reagents on the mineral surface increases,the surface adsorption entropy change increases,and the Gibbs free energy change of adsorption decreases.According to the results obtained using flotation thermodynamics theory,we established high-entropy flotation theory and a technical method in which increasing the types of flotation reagents adsorbed on the mineral surface,increasing the adsorption entropy change of the flotation reagents,decreasing the Gibbs free energy change,and improving the adsorption efficiency and stability of the flotation reagents improves refractory mineral flotation. 展开更多
关键词 multicomponent flotation reagent adsorption entropy change equations of thermodynamic equilibrium adsorption equilibri-um constant high-entropy flotation
下载PDF
Predicting heavy metals' adsorption edges and adsorption isotherms on MnO_2 with the parameters determined from Langmuir kinetics 被引量:3
4
作者 Qinghai Hu Zhongjin Xiao +2 位作者 Xinmei Xiong Gongming Zhou Xiaohong Guan 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2015年第1期207-216,共10页
Although surface complexation models have been widely used to describe the adsorption of heavy metals, few studies have verified the feasibility of modeling the adsorption kinetics,edge, and isotherm data with one p H... Although surface complexation models have been widely used to describe the adsorption of heavy metals, few studies have verified the feasibility of modeling the adsorption kinetics,edge, and isotherm data with one p H-independent parameter. A close inspection of the derivation process of Langmuir isotherm revealed that the equilibrium constant derived from the Langmuir kinetic model, KS-kinetic, is theoretically equivalent to the adsorption constant in Langmuir isotherm, KS-Langmuir. The modified Langmuir kinetic model(MLK model) and modified Langmuir isotherm model(MLI model) incorporating p H factor were developed. The MLK model was employed to simulate the adsorption kinetics of Cu(II), Co(II), Cd(II), Zn(II) and Ni(II) on MnO2 at pH 3.2 or 3.3 to get the values of KS-kinetic. The adsorption edges of heavy metals could be modeled with the modified metal partitioning model(MMP model), and the values of KS-Langmuir were obtained. The values of KS-kinetic and KS-Langmuir are very close to each other, validating that the constants obtained by these two methods are basically the same. The MMP model with KS-kinetic constants could predict the adsorption edges of heavy metals on MnO2 very well at different adsorbent/adsorbate concentrations. Moreover, the adsorption isotherms of heavy metals on MnO2 at various pH levels could be predicted reasonably well by the MLI model with the KS-kinetic constants. 展开更多
关键词 Heavy metals adsorption edge adsorption isotherm adsorption constants
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部