Trivalent chromium(Cr(Ⅲ))can form stable soluble complexes with organic components,altering its adsorption properties in the water-soil environment.This increases the risk of Cr(Ⅲ)migrating to deeper soils and trans...Trivalent chromium(Cr(Ⅲ))can form stable soluble complexes with organic components,altering its adsorption properties in the water-soil environment.This increases the risk of Cr(Ⅲ)migrating to deeper soils and transforming into toxic Cr(VI)due to the presence of manganese oxides in sediments.In this study,Citric Acid(CA)was selected as a representative organic ligand to prepare and characterize Cr(III)-CA complexes.The characteristics,mechanisms and environmental factors influencing the adsorption of Cr(Ⅲ)-CA on porous media(silts and fine sands)were investigated in the study.The results show that Cr(Ⅲ)coordinates with CA at a 1:1 molar ratio,forming stable and soluble Cr(Ⅲ)-CA complexes.Compared to Cr(III)ions,the equilibrium adsorption capacity of Cr(Ⅲ)-CA is an order of magnitude lower in silts and fine sands.The adsorption of Cr(Ⅲ)-CA in silts and fine sands is dominated by chemical adsorption of monolayers,following the pseudo-second-order kinetic equation and the Langmuir isotherm adsorption model.Varying contents of clay minerals and iron-aluminum oxides prove to be the main causes of differences in adsorption capacity of Cr(Ⅲ)-CA in silts and fine sands.Changes in solution pH affect the adsorption rate and capacity of Cr(Ⅲ)-CA by altering its ionic form.The adsorption process is irreversible and only minimally influenced by ionic strength,suggesting that inner-sphere complexation serves as the dominant Cr(Ⅲ)-CA adsorption mechanism.展开更多
A novel alkoxycarbonyl thiourea resin(ATR)was synthesized by monomer polymerization of oxydiethane-2,1-diyl dicarbonisothiocyanatidate and polyethylene polyamine,and characterized by FT-IR.The adsorption properties of...A novel alkoxycarbonyl thiourea resin(ATR)was synthesized by monomer polymerization of oxydiethane-2,1-diyl dicarbonisothiocyanatidate and polyethylene polyamine,and characterized by FT-IR.The adsorption properties of ATR were investigated by batch test.The adsorption capacities for Au(Ⅲ),Ag(Ⅰ),Cu(Ⅱ),Zn(Ⅱ),Fe(Ⅲ),Ca(Ⅱ)and Mg(Ⅱ)are 4.65,4.40,0.40,0.90,0.86,0.0080 and 0.016 mmol/g,respectively,when the adsorption condition is as follows:contact time 24 h,temperature 30℃,initial concentration of Au(Ⅲ)5.08 mmol/L and that of other metals 0.10 mol/L,and concentration of acid 1.0 mol/L.The adsorption capacity for Au(Ⅲ)increases with the increase of contact time,temperature and initial concentration of Au(Ⅲ).The capacity after five adsorption-desorption cycles remains 90%that of the first time,and the separation factors of ATR for binary metal ion solutions are larger than 995,indicating that ATR is of good regeneration property and selectivity.XPS results show that the functional atoms of ATR supply electrons for Au and coordinate with Au during the adsorption.展开更多
The adsorption behavior and mechanism of Bi(Ⅲ) ions on the rutile-water interface were investigated through micro-flotation, Zeta potential measurement, adsorption amount measurement and X-ray photoelectron spectro...The adsorption behavior and mechanism of Bi(Ⅲ) ions on the rutile-water interface were investigated through micro-flotation, Zeta potential measurement, adsorption amount measurement and X-ray photoelectron spectroscopy(XPS). According to the results of micro-flotation, Bi(Ⅲ) ions could largely improve the rutile flotation recovery(from 62% to 91%), and they could increase the activating sites and reduce the competitive adsorption between nonyl hydroxamic acid negative ions and OH-ions, which determined that Bi(Ⅲ) ions were capable of activating rutile flotation. The adsorption of Bi(Ⅲ) ions onto the rutile surface led to the shift of Zeta potential into the positive direction, which was good for the adsorption of nonyl hydroxamic acid anions. In addition, the results of XPS indicated that the chemical environment around Ti atom had not changed before and after the adsorption of Bi(Ⅲ) ions. Based on the adsorption mechanism of Bi(Ⅲ) ions, it was deduced that firstly Bi(Ⅲ) ions occupied the vacancies of the original Ca^2+, Mg^2+ and Fe^2+ ions on the rutile surface; secondly Bi(Ⅲ) ions covered on the rutile surface in the form of hydroxides.展开更多
The adsorption characteristics and mechanisms of spirulina powder were investigated when it was used as adsorbent to recover ytterbium(Ⅲ) from wastewater solution. Surface structure and element valence of the adsorbe...The adsorption characteristics and mechanisms of spirulina powder were investigated when it was used as adsorbent to recover ytterbium(Ⅲ) from wastewater solution. Surface structure and element valence of the adsorbent were analyzed by SEM and XPS for the exploring of its adsorption mechanism for ytterbium(Ⅲ). The adsorption characteristics of ytterbium(Ⅲ) on spirulina powder was analyzed through assessing adsorption isotherm, kinetics and thermodynamic models. The adsorption isotherm data were best explained by Langmuir model, and the adsorption capacity of spirulina powder for ytterbium(Ⅲ) was 72.46 mg/g when adsorption temperature was 318 K. The kinetic experiment results showed that the pseudo-second order kinetic model can better simulate the adsorption process of spirulina powder to ytterbium(Ⅲ), indicating that the rate-controlling step was chemical adsorption. Spirulina can be an efficient and economical ytterbium(Ⅲ) recycling material, because it showed good adsorption stability and reusability from the adsorption-desorption cycle experiment results.展开更多
Adsorption of CH3O at four sites (top, bridge, hcp, fcc) on Au(111) surface has been investigated by density functional theory method at the generalized gradient approximation level. We have performed calculations...Adsorption of CH3O at four sites (top, bridge, hcp, fcc) on Au(111) surface has been investigated by density functional theory method at the generalized gradient approximation level. We have performed calculations on adsorption energies, structures, Mulliken charges and vibrational frequencies of CH3O on Au(111) surface with full-geometry optimization. The predicted results are compared with the available experimental observation. The calculated CH3O adsorption structure and stretching vibrational frequencies agree well with experimental ones, and precise determinations of adsorption sites are carded out. The most favorite adsorption on Au(111) occurs at the bridge site, and O-C axis is tilted to the surface. However, on hollow sites (hcp, fcc) the species is adsorbed in an upright geometry (pseudo-C3v local symmetry).展开更多
Nano-TiO2 was employed for the adsorption of gallium from aqueous solution in batch equilibrium experiments to investigate its adsorption properties. It was found that the adsorption efficiency of Ga(Ⅲ) was more th...Nano-TiO2 was employed for the adsorption of gallium from aqueous solution in batch equilibrium experiments to investigate its adsorption properties. It was found that the adsorption efficiency of Ga(Ⅲ) was more than 96% at pH 3.0. The adsorption capacities and rates of Ga(Ⅲ) onto nano-TiO2 were evaluated as a function of solution concentration and temperature. The results were analyzed using the Langmuir adsorption isotherms. Adsorption isothermal data could be well interpreted by the Langmuir model. The mean energy of adsorption, 15.81 kJ.mol^-1, was calculated from the D-R adsorption isotherm. The kinetic experimental data properly correlate with the pseudo-second-order kinetic model. The thermodynamic parameters for the process of adsorption have been estimated. The △H and △G values of gallium(Ⅲ) adsorption on nano-TiO2 showed an endothermic and spontaneous nature of adsorption.展开更多
The adsorption behavior and mechanism of D ll 3 resin for Dy(lII) was investigated by using the method of resin adsorption. Experimental results show that the optimum medium pH of adsorption of D 113 resin for Dy^3-...The adsorption behavior and mechanism of D ll 3 resin for Dy(lII) was investigated by using the method of resin adsorption. Experimental results show that the optimum medium pH of adsorption of D 113 resin for Dy^3- is pH=6.00 in the HAc-NaAc medium. The static adsorption capacity of D113 resin for Dy3. is 292.7 mg·g^-1. The optimum eluant is 0.5 mol,L-~ HC1. The adsorption rate constant is k298=6.8× 10-6s^-1. The apparent activation energy of D113 resin for Dy(Ⅲ) is 14.79 kJ·mol^-1. The adsorption behavior of D113 resin for Dy(Ⅲ) obeys the Freundlich isotherm. The adsorption parameters of thermodynamic are AH=14.48 kJ·mol^-1,△S=54.69 J·mol^-1,K^-1, △G= 1.82 kJ·mol^-1.The adsorption mechanism of Dll3 resin for Dy^3- was confirmed by chemical analysis and IR spectra.展开更多
To explore the kinetic adsorption under continuous and nonequilibrium states, an integration of continuous measurement and adsorption platform kinetics method was proposed, which was initially called the ICM-AP kineti...To explore the kinetic adsorption under continuous and nonequilibrium states, an integration of continuous measurement and adsorption platform kinetics method was proposed, which was initially called the ICM-AP kinetics method, and a corresponding kinetic adsorption experimental method was developed. Adsorption experiments of europium(Eu) on Ca-bentonite,Na-bentonite, and the D231 cation exchange resin were performed using the ICM-AP kinetics method and continuous measurements. Because the kinetic experimental results observed in this study were different from those of traditional batch adsorption data, pseudo-first-order or pseudo-second-order kinetic models were unsuitable for fitting the experimental data.Hence, a liquid membrane diffusion(LMD) model was developed based on the assumption of simultaneous adsorption/desorption to discuss the mechanism of kinetic adsorption. The kinetic adsorption mechanism was also studied by using XPS.The results indicated that the proposed adsorption model can fit the experimental data more suitably, and the adsorption/desorption behaviors of Eu on bentonite and the D231 resin were simultaneously observed, suggesting that the adsorption kinetics of Eu(Ⅲ) was mainly dominated by hydrated Eu(Ⅲ) ions on the liquid membrane.展开更多
A batch experiment was conducted to investigate the adsorption of trivalent chromium (Cr(Ⅲ)) from aqueous solutions by sugarcane pulp residue (SPR) and biochar. The results show that Cr(Ⅲ) adsorption by SPR ...A batch experiment was conducted to investigate the adsorption of trivalent chromium (Cr(Ⅲ)) from aqueous solutions by sugarcane pulp residue (SPR) and biochar. The results show that Cr(Ⅲ) adsorption by SPR and biochar is highly pH-dependent and Cr(Ⅲ) adsorption amount increases with the increase of pH. The adsorption kinetics of Cr(Ⅲ) fits well with the pseudo-second-order model. The maximum Cr(Ⅲ) adsorption capacities of 15.85 mg/g and 3.43 mg/g for biochar and SPR were calculated by Langmuir model. This indicates that biochar has a larger ability for Cr(Ⅲ) adsorption than SPR. The free energy change value (AG) reveals a spontaneous sorption process of Cr(Ⅲ) onto SPR and non-spontaneous sorption process onto biochar. The entropy change (AS) and enthalpy change (AH) are found to be 66.27 J/(mol'K) and 17.13 kJ/mol for SPR and 91.59 J/(mol-K) and 30.875 kJ/mol for biochar which further reflect an affinity of Cr(Ⅲ) onto SPR and biochar. It is suggested that biochar has potential to be an efficient adsorbent in the removal of Cr(Ⅲ) from industrial wastewater.展开更多
Sugarcane pulp residue (SPR), a waste from sugar-refinery, which possesses a large surface area, can be used for removing chromium (Cr(Ⅲ) and Cr(Ⅵ)) from wastewater. In this work, the kinetics, isotherms of...Sugarcane pulp residue (SPR), a waste from sugar-refinery, which possesses a large surface area, can be used for removing chromium (Cr(Ⅲ) and Cr(Ⅵ)) from wastewater. In this work, the kinetics, isotherms of Cr(Ⅲ) and Cr(V[) adsorption and their removal by SPR were investigated. The results show that the removal percentages of Cr(Ⅵ) and Cr(Ⅲ) increase with increasing SPR dosage and temperature and decrease with increasing SPR particle size and the initial concentration of chromium ions. However, the influence of pH value on the Cr(Ⅵ) removal differs from that of the Cr(Ⅲ) removal. The Cr(Ⅵ) removal percentage decreases with increasing pH values, while the Cr(Ⅲ) removal percentage increases with increasing pH value. The adsorption kinetics of Cr(Ⅵ) and Cr(Ⅲ) well fits with pseudo-second-order model. Langmuir adsorption isotherm can well describe the adsorption phenomena of chromium ions with the maximum adsorption capacity of 0.567 mg/g for Cr(Ⅵ) and 3.446 mg/g for Cr(Ⅲ). Moreover, SPR reveals higher adsorption capacity for Cr(Ⅲ) than that for Cr(Ⅵ), which implies that SPR has more potential application for Cr(Ⅲ)-containing wastewater treatment than that for Cr(Ⅵ)-containing wastewater treatment.展开更多
We have systematically investigated the adsorption and hydrogenation process of p-chloronitrobenzene on Au20 cluster using density functional theory-DFT) calculations.The adsorption of two types of all species,vertic...We have systematically investigated the adsorption and hydrogenation process of p-chloronitrobenzene on Au20 cluster using density functional theory-DFT) calculations.The adsorption of two types of all species,vertical adsorption and parallel adsorption,is compared,revealing that former model is more stable than the latter,and all of the species prefer to adsorb at the vertex site.After adsorption,electrons transferred from Au20 cluster to the p-chloronitrobenzene molecule.Almost all hydrogenation processes are exothermic,and the C–Cl bond scissions are considered as the rate-limiting step for both Paths A-p-CNB→p-CAN→AN) and B-p-CNB→NB→AN) with the energy barriers of 2.62 and 2.95 e V,respectively.These suggest that the C–Cl bond scission is not easy to occur on Au20 cluster due to the high energy barrier,especially the path B.The p-chloroaniline is the main hydrogenation product catalyzed by Au20.展开更多
The spherical macroporous cellulose(SMC) was fabricated using medical absorbent cotton as raw material and nano CaCO3 as porogenic agents.And then,the phenylglycine was grafted onto the SMC to obtain the novel spheric...The spherical macroporous cellulose(SMC) was fabricated using medical absorbent cotton as raw material and nano CaCO3 as porogenic agents.And then,the phenylglycine was grafted onto the SMC to obtain the novel spherical macroporous cellulose derivative adsorbent(PSMC).FT-IR and scanning electron microscope(SEM) were employed to characterize the adsorbents and Fe3+ ions served as model solute to evaluate the adsorption property of the adsorbents.The experimental results show that the amount of porogenic agents and the value of pH have obvious influence on adsorption capacity of the adsorbents.The data of adsorption kinetic and isotherm display that the adsorbents possess excellent equilibrium adsorption capacity(348.94 mg/g) and have a bright prospect and considerable potential in the treatment of Fe3+ ions in wastewater.展开更多
To study the adsorption properties of organic functional groups in plant fibres and identify a highly efficient and affordable adsorbent for radioactive wastewater treatment,natural bamboo fibre(NBF)samples were prepa...To study the adsorption properties of organic functional groups in plant fibres and identify a highly efficient and affordable adsorbent for radioactive wastewater treatment,natural bamboo fibre(NBF)samples were prepared,and the adsorption properties of Eu(Ⅲ)on NBFs were studied under given experimental conditions.The effects of the pH,solid-to-liquid ratio,background ions,humic acid,contact time,and temperature on the adsorption behaviour of Eu(Ⅲ)on NBFs were investigated.Adsorption was greatly influenced by pH,and the adsorption curves presented two inflection points at pH≈7 and pH≈11.Moreover,while the ionic strength presented a negative effect at pH<7,the high ionic strength favoured adsorption at pH>7.During adsorption on NBFs,the–OH,C–H,O–H,C–O,and C=O were the main adsorption groups.Hydrolysis occurring on the NBF surface caused the adsorption process to become increasingly difficult at pH>7.The maximum adsorption capacity of NBFs was 147.6 mg/g at 308 K,and the adsorption could be described using the pseudo-second-order kinetic model.The adsorption of Eu(Ⅲ)on NBFs was a spontaneous and endothermic process according to the thermodynamic parameters of the process,and the adsorption thermodynamics could be well described using the Freundlich adsorption model.Therefore,NBFs were determined to be an efficient,inexpensive,and easily disposable sewage treatment material.展开更多
Adsorption of single gold (Au) atom at three kinds of sites (hollow, bridge and top) on the hydroxylated β-cristobalite SiO2 (1 1 1) surface was studied using the first-principles calculations with general grad...Adsorption of single gold (Au) atom at three kinds of sites (hollow, bridge and top) on the hydroxylated β-cristobalite SiO2 (1 1 1) surface was studied using the first-principles calculations with general gradient approximation (GGA). The results of adsorption energies and density of electronic states (DOS) suggest that the hollow and bridge sites have the basically equal capability of binding Au, while the ability of the Top site is weaker. Two new energy levels emerge after the adsorption at all sites; in DOS of the Hollow configuration, one locates at -0.15 eV, composed of Au 5d and O 2p electronic states, another just crosses through the Fermi level, consisting of Au 6s, H 1s and O 2p. In addition, Mulliken population analyses indicate that electron transfer takes place between the Au atom and the surface H and O atoms in the Hollow and Bridge configurations, which can be used to interpret the adsorption of Au onto the positions. However, neither H nor O chemically bonds with Au atom.展开更多
In this paper, the adsorption process of calmodulin (CaM) on Au substrate was first investigated with electrochemical impedance spectroscopy (EIS) method. The result reveals that the adsorption of the protein-calmodu...In this paper, the adsorption process of calmodulin (CaM) on Au substrate was first investigated with electrochemical impedance spectroscopy (EIS) method. The result reveals that the adsorption of the protein-calmodulin contains two steps, i.e., one short quick step followed by a slow one. The complexation of calmodulin with Ca2+ was also first probed using EIS technique, in which the complexation of CaM with Ca2+ could be reflected by the change of apparent membrane capacitance(Capp) clearly. In all above measurements, a redox couple Fe(CN)63-/ Fe(CN)64- was used as probing-pin to reflect all the changes occurring in the above process. Our work suggests that some biological processes of CaM could be studied using EIS method conveniently.展开更多
The adsorption characteristics of rare earth ion La(Ⅲ) on Yunnan bowl tea surface from aqueous solution and effects of various surfactants on the adsorption were studied. It was found that Yunnan bowl tea can adsorb ...The adsorption characteristics of rare earth ion La(Ⅲ) on Yunnan bowl tea surface from aqueous solution and effects of various surfactants on the adsorption were studied. It was found that Yunnan bowl tea can adsorb strongly La(Ⅲ) and pH may affect drastically the adsorption amount of La(Ⅲ). The adsorption law of La(Ⅲ) on Yunnan bowl tea surface follows the Langmuir equation. The maximum adsorption amount of La(Ⅲ) can reach 15 mg·g (-1). A comprehensive adsorption model is suggested according to the experimental results.展开更多
The adsorption of Fe(Ⅲ)ions from aqueous solution by chitosan alpha-ketoglutaric acid(KCTS)and hydroxamated chitosan alpha-ketoglutaric acid(HKCTS)was studied in a batch adsorption system.Experiments were carried out...The adsorption of Fe(Ⅲ)ions from aqueous solution by chitosan alpha-ketoglutaric acid(KCTS)and hydroxamated chitosan alpha-ketoglutaric acid(HKCTS)was studied in a batch adsorption system.Experiments were carried out as function of pH,temperature,agitation rate and concentration of Fe(Ⅲ)ions.The Langmuir and Freundlich adsorption models were applied to describe the equilibrium isotherms and isotherm constants were determined.The Langmuir model agrees very well with experimental data.The pseudo-first-order a...展开更多
Proteins adsorption at solid surfaces are of paramount important for many natural processes. However, the role of specific water in influencing the adsorption process has not been well understood. We used molecular dy...Proteins adsorption at solid surfaces are of paramount important for many natural processes. However, the role of specific water in influencing the adsorption process has not been well understood. We used molecular dynamics simulation to study the adsorption of BPTI on Au surface in three water environments (dielectric constant model, partial and full solvation models). The result shows that a fast and strong adsorption can occur in the dielectric environment, which leads to significant structure changes, as confirmed by great deviation from the crystal structure, largely spreading along the Au surface, rapid lose in all secondary structures and the great number of atoms in contact with the surface. Compared to the dielectric model, slower adsorption and fewer changes in the calculated properties above are observed in the partial solvation system since the specific water layer weakens the adsorption effects. However, in the partial solvation system, the adsorption of polar Au surface causes a significant decrease in the specific hydration around the protein, which still results in large structure changes similar to the dielectric system, but with much less adsorption extent. Enough water molecules in the full solvation system could allow the protein to rotate, and to large extent preserve the protein native structure, thus leading to the slowest and weakest adsorption. On the whole, the effects of non-specific and specific solvation on the protein structure and adsorption dynamics are significantly different, highlighting the importance of the specific water molecule in the protein adsorption.展开更多
基金financially supported jointly by Natural Science Foundation of Fujian Province of China(NO.2023J01227)Natural Science Foundation of Hebei Province(NO.D2020504003)Key Laboratory of Groundwater Remediation of Hebei Province and China Geological Survey(NO.SK202303).
文摘Trivalent chromium(Cr(Ⅲ))can form stable soluble complexes with organic components,altering its adsorption properties in the water-soil environment.This increases the risk of Cr(Ⅲ)migrating to deeper soils and transforming into toxic Cr(VI)due to the presence of manganese oxides in sediments.In this study,Citric Acid(CA)was selected as a representative organic ligand to prepare and characterize Cr(III)-CA complexes.The characteristics,mechanisms and environmental factors influencing the adsorption of Cr(Ⅲ)-CA on porous media(silts and fine sands)were investigated in the study.The results show that Cr(Ⅲ)coordinates with CA at a 1:1 molar ratio,forming stable and soluble Cr(Ⅲ)-CA complexes.Compared to Cr(III)ions,the equilibrium adsorption capacity of Cr(Ⅲ)-CA is an order of magnitude lower in silts and fine sands.The adsorption of Cr(Ⅲ)-CA in silts and fine sands is dominated by chemical adsorption of monolayers,following the pseudo-second-order kinetic equation and the Langmuir isotherm adsorption model.Varying contents of clay minerals and iron-aluminum oxides prove to be the main causes of differences in adsorption capacity of Cr(Ⅲ)-CA in silts and fine sands.Changes in solution pH affect the adsorption rate and capacity of Cr(Ⅲ)-CA by altering its ionic form.The adsorption process is irreversible and only minimally influenced by ionic strength,suggesting that inner-sphere complexation serves as the dominant Cr(Ⅲ)-CA adsorption mechanism.
基金Projects(20476105,50604016)supported by the National Natural Science Foundation of China
文摘A novel alkoxycarbonyl thiourea resin(ATR)was synthesized by monomer polymerization of oxydiethane-2,1-diyl dicarbonisothiocyanatidate and polyethylene polyamine,and characterized by FT-IR.The adsorption properties of ATR were investigated by batch test.The adsorption capacities for Au(Ⅲ),Ag(Ⅰ),Cu(Ⅱ),Zn(Ⅱ),Fe(Ⅲ),Ca(Ⅱ)and Mg(Ⅱ)are 4.65,4.40,0.40,0.90,0.86,0.0080 and 0.016 mmol/g,respectively,when the adsorption condition is as follows:contact time 24 h,temperature 30℃,initial concentration of Au(Ⅲ)5.08 mmol/L and that of other metals 0.10 mol/L,and concentration of acid 1.0 mol/L.The adsorption capacity for Au(Ⅲ)increases with the increase of contact time,temperature and initial concentration of Au(Ⅲ).The capacity after five adsorption-desorption cycles remains 90%that of the first time,and the separation factors of ATR for binary metal ion solutions are larger than 995,indicating that ATR is of good regeneration property and selectivity.XPS results show that the functional atoms of ATR supply electrons for Au and coordinate with Au during the adsorption.
基金Project(51474254)supported by the National Natural Science Foundation of ChinaProject(2013M531813)supported by the China Postdoctoral Science Foundation+1 种基金Project(2016zzts111)supported by the Independent Exploration and Innovation Program of Central South University,ChinaProject(CSUZC201715)supported by Open-End Fund for the Valuable and Precision Instruments of Central South University,China
文摘The adsorption behavior and mechanism of Bi(Ⅲ) ions on the rutile-water interface were investigated through micro-flotation, Zeta potential measurement, adsorption amount measurement and X-ray photoelectron spectroscopy(XPS). According to the results of micro-flotation, Bi(Ⅲ) ions could largely improve the rutile flotation recovery(from 62% to 91%), and they could increase the activating sites and reduce the competitive adsorption between nonyl hydroxamic acid negative ions and OH-ions, which determined that Bi(Ⅲ) ions were capable of activating rutile flotation. The adsorption of Bi(Ⅲ) ions onto the rutile surface led to the shift of Zeta potential into the positive direction, which was good for the adsorption of nonyl hydroxamic acid anions. In addition, the results of XPS indicated that the chemical environment around Ti atom had not changed before and after the adsorption of Bi(Ⅲ) ions. Based on the adsorption mechanism of Bi(Ⅲ) ions, it was deduced that firstly Bi(Ⅲ) ions occupied the vacancies of the original Ca^2+, Mg^2+ and Fe^2+ ions on the rutile surface; secondly Bi(Ⅲ) ions covered on the rutile surface in the form of hydroxides.
基金financial supports from the National Natural Science Foundation of China (21766009,21761013)the Program of Qingjiang Excellent Young Talents for the Jiangxi University of Science and Technology,China。
文摘The adsorption characteristics and mechanisms of spirulina powder were investigated when it was used as adsorbent to recover ytterbium(Ⅲ) from wastewater solution. Surface structure and element valence of the adsorbent were analyzed by SEM and XPS for the exploring of its adsorption mechanism for ytterbium(Ⅲ). The adsorption characteristics of ytterbium(Ⅲ) on spirulina powder was analyzed through assessing adsorption isotherm, kinetics and thermodynamic models. The adsorption isotherm data were best explained by Langmuir model, and the adsorption capacity of spirulina powder for ytterbium(Ⅲ) was 72.46 mg/g when adsorption temperature was 318 K. The kinetic experiment results showed that the pseudo-second order kinetic model can better simulate the adsorption process of spirulina powder to ytterbium(Ⅲ), indicating that the rate-controlling step was chemical adsorption. Spirulina can be an efficient and economical ytterbium(Ⅲ) recycling material, because it showed good adsorption stability and reusability from the adsorption-desorption cycle experiment results.
文摘Adsorption of CH3O at four sites (top, bridge, hcp, fcc) on Au(111) surface has been investigated by density functional theory method at the generalized gradient approximation level. We have performed calculations on adsorption energies, structures, Mulliken charges and vibrational frequencies of CH3O on Au(111) surface with full-geometry optimization. The predicted results are compared with the available experimental observation. The calculated CH3O adsorption structure and stretching vibrational frequencies agree well with experimental ones, and precise determinations of adsorption sites are carded out. The most favorite adsorption on Au(111) occurs at the bridge site, and O-C axis is tilted to the surface. However, on hollow sites (hcp, fcc) the species is adsorbed in an upright geometry (pseudo-C3v local symmetry).
基金supported by the Science Foundation of Education Department of Liaoning Province (Nos. 2007T053)the Natural Science Foundation of Liaoning Province, China (Nos.20082050)
文摘Nano-TiO2 was employed for the adsorption of gallium from aqueous solution in batch equilibrium experiments to investigate its adsorption properties. It was found that the adsorption efficiency of Ga(Ⅲ) was more than 96% at pH 3.0. The adsorption capacities and rates of Ga(Ⅲ) onto nano-TiO2 were evaluated as a function of solution concentration and temperature. The results were analyzed using the Langmuir adsorption isotherms. Adsorption isothermal data could be well interpreted by the Langmuir model. The mean energy of adsorption, 15.81 kJ.mol^-1, was calculated from the D-R adsorption isotherm. The kinetic experimental data properly correlate with the pseudo-second-order kinetic model. The thermodynamic parameters for the process of adsorption have been estimated. The △H and △G values of gallium(Ⅲ) adsorption on nano-TiO2 showed an endothermic and spontaneous nature of adsorption.
基金the Natural Science Foundation of Zhejiang Province(No.201027)Foundation of Zhejiang Provincial Education Bureau(No.20040551)Zhoushan Science.Technology Bureau(No.04114)
文摘The adsorption behavior and mechanism of D ll 3 resin for Dy(lII) was investigated by using the method of resin adsorption. Experimental results show that the optimum medium pH of adsorption of D 113 resin for Dy^3- is pH=6.00 in the HAc-NaAc medium. The static adsorption capacity of D113 resin for Dy3. is 292.7 mg·g^-1. The optimum eluant is 0.5 mol,L-~ HC1. The adsorption rate constant is k298=6.8× 10-6s^-1. The apparent activation energy of D113 resin for Dy(Ⅲ) is 14.79 kJ·mol^-1. The adsorption behavior of D113 resin for Dy(Ⅲ) obeys the Freundlich isotherm. The adsorption parameters of thermodynamic are AH=14.48 kJ·mol^-1,△S=54.69 J·mol^-1,K^-1, △G= 1.82 kJ·mol^-1.The adsorption mechanism of Dll3 resin for Dy^3- was confirmed by chemical analysis and IR spectra.
基金This work was supported by the Natural Science Foundation of the Jiangxi Province,China(No.20202BABL203004)Opening Project of the State Key Laboratory of Nuclear Resources and Environment(East China University of Technology)(No.2022NRE23)Opening Project of the Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices(No.PMND202101).
文摘To explore the kinetic adsorption under continuous and nonequilibrium states, an integration of continuous measurement and adsorption platform kinetics method was proposed, which was initially called the ICM-AP kinetics method, and a corresponding kinetic adsorption experimental method was developed. Adsorption experiments of europium(Eu) on Ca-bentonite,Na-bentonite, and the D231 cation exchange resin were performed using the ICM-AP kinetics method and continuous measurements. Because the kinetic experimental results observed in this study were different from those of traditional batch adsorption data, pseudo-first-order or pseudo-second-order kinetic models were unsuitable for fitting the experimental data.Hence, a liquid membrane diffusion(LMD) model was developed based on the assumption of simultaneous adsorption/desorption to discuss the mechanism of kinetic adsorption. The kinetic adsorption mechanism was also studied by using XPS.The results indicated that the proposed adsorption model can fit the experimental data more suitably, and the adsorption/desorption behaviors of Eu on bentonite and the D231 resin were simultaneously observed, suggesting that the adsorption kinetics of Eu(Ⅲ) was mainly dominated by hydrated Eu(Ⅲ) ions on the liquid membrane.
基金Project(50925417) supported by the National Funds for Distinguished Young Scientist,ChinaProject(50830301) supported by the Key Program of National Natural Science Foundation of ChinaProject(51074191) supported by the National Natural Science Foundation of China
文摘A batch experiment was conducted to investigate the adsorption of trivalent chromium (Cr(Ⅲ)) from aqueous solutions by sugarcane pulp residue (SPR) and biochar. The results show that Cr(Ⅲ) adsorption by SPR and biochar is highly pH-dependent and Cr(Ⅲ) adsorption amount increases with the increase of pH. The adsorption kinetics of Cr(Ⅲ) fits well with the pseudo-second-order model. The maximum Cr(Ⅲ) adsorption capacities of 15.85 mg/g and 3.43 mg/g for biochar and SPR were calculated by Langmuir model. This indicates that biochar has a larger ability for Cr(Ⅲ) adsorption than SPR. The free energy change value (AG) reveals a spontaneous sorption process of Cr(Ⅲ) onto SPR and non-spontaneous sorption process onto biochar. The entropy change (AS) and enthalpy change (AH) are found to be 66.27 J/(mol'K) and 17.13 kJ/mol for SPR and 91.59 J/(mol-K) and 30.875 kJ/mol for biochar which further reflect an affinity of Cr(Ⅲ) onto SPR and biochar. It is suggested that biochar has potential to be an efficient adsorbent in the removal of Cr(Ⅲ) from industrial wastewater.
基金Projects(2006AA06Z374, 2007AA021304) supported by the National High-Tech Research and Development Program of ChinaProject(2008SK2007) supported by the Key Program of Science and Technology of Hunan Province, China
文摘Sugarcane pulp residue (SPR), a waste from sugar-refinery, which possesses a large surface area, can be used for removing chromium (Cr(Ⅲ) and Cr(Ⅵ)) from wastewater. In this work, the kinetics, isotherms of Cr(Ⅲ) and Cr(V[) adsorption and their removal by SPR were investigated. The results show that the removal percentages of Cr(Ⅵ) and Cr(Ⅲ) increase with increasing SPR dosage and temperature and decrease with increasing SPR particle size and the initial concentration of chromium ions. However, the influence of pH value on the Cr(Ⅵ) removal differs from that of the Cr(Ⅲ) removal. The Cr(Ⅵ) removal percentage decreases with increasing pH values, while the Cr(Ⅲ) removal percentage increases with increasing pH value. The adsorption kinetics of Cr(Ⅵ) and Cr(Ⅲ) well fits with pseudo-second-order model. Langmuir adsorption isotherm can well describe the adsorption phenomena of chromium ions with the maximum adsorption capacity of 0.567 mg/g for Cr(Ⅵ) and 3.446 mg/g for Cr(Ⅲ). Moreover, SPR reveals higher adsorption capacity for Cr(Ⅲ) than that for Cr(Ⅵ), which implies that SPR has more potential application for Cr(Ⅲ)-containing wastewater treatment than that for Cr(Ⅵ)-containing wastewater treatment.
基金supported by the National Natural Science Foundation of China-No.21503188)the Natural Science Foundation of Zhejiang Province-No.LQ15B030002)
文摘We have systematically investigated the adsorption and hydrogenation process of p-chloronitrobenzene on Au20 cluster using density functional theory-DFT) calculations.The adsorption of two types of all species,vertical adsorption and parallel adsorption,is compared,revealing that former model is more stable than the latter,and all of the species prefer to adsorb at the vertex site.After adsorption,electrons transferred from Au20 cluster to the p-chloronitrobenzene molecule.Almost all hydrogenation processes are exothermic,and the C–Cl bond scissions are considered as the rate-limiting step for both Paths A-p-CNB→p-CAN→AN) and B-p-CNB→NB→AN) with the energy barriers of 2.62 and 2.95 e V,respectively.These suggest that the C–Cl bond scission is not easy to occur on Au20 cluster due to the high energy barrier,especially the path B.The p-chloroaniline is the main hydrogenation product catalyzed by Au20.
基金Projects(81373284,81102344) supported by the National Natural Science Foundation of China
文摘The spherical macroporous cellulose(SMC) was fabricated using medical absorbent cotton as raw material and nano CaCO3 as porogenic agents.And then,the phenylglycine was grafted onto the SMC to obtain the novel spherical macroporous cellulose derivative adsorbent(PSMC).FT-IR and scanning electron microscope(SEM) were employed to characterize the adsorbents and Fe3+ ions served as model solute to evaluate the adsorption property of the adsorbents.The experimental results show that the amount of porogenic agents and the value of pH have obvious influence on adsorption capacity of the adsorbents.The data of adsorption kinetic and isotherm display that the adsorbents possess excellent equilibrium adsorption capacity(348.94 mg/g) and have a bright prospect and considerable potential in the treatment of Fe3+ ions in wastewater.
基金supported by the National Natural Science Foundation of China(No.21561001)the Natural Science Foundation of Jiangxi Province,China(No.20161BAB203100)
文摘To study the adsorption properties of organic functional groups in plant fibres and identify a highly efficient and affordable adsorbent for radioactive wastewater treatment,natural bamboo fibre(NBF)samples were prepared,and the adsorption properties of Eu(Ⅲ)on NBFs were studied under given experimental conditions.The effects of the pH,solid-to-liquid ratio,background ions,humic acid,contact time,and temperature on the adsorption behaviour of Eu(Ⅲ)on NBFs were investigated.Adsorption was greatly influenced by pH,and the adsorption curves presented two inflection points at pH≈7 and pH≈11.Moreover,while the ionic strength presented a negative effect at pH<7,the high ionic strength favoured adsorption at pH>7.During adsorption on NBFs,the–OH,C–H,O–H,C–O,and C=O were the main adsorption groups.Hydrolysis occurring on the NBF surface caused the adsorption process to become increasingly difficult at pH>7.The maximum adsorption capacity of NBFs was 147.6 mg/g at 308 K,and the adsorption could be described using the pseudo-second-order kinetic model.The adsorption of Eu(Ⅲ)on NBFs was a spontaneous and endothermic process according to the thermodynamic parameters of the process,and the adsorption thermodynamics could be well described using the Freundlich adsorption model.Therefore,NBFs were determined to be an efficient,inexpensive,and easily disposable sewage treatment material.
基金Funded by the Fundamental Research Funds for the Central Universities (No. CUGL100240)
文摘Adsorption of single gold (Au) atom at three kinds of sites (hollow, bridge and top) on the hydroxylated β-cristobalite SiO2 (1 1 1) surface was studied using the first-principles calculations with general gradient approximation (GGA). The results of adsorption energies and density of electronic states (DOS) suggest that the hollow and bridge sites have the basically equal capability of binding Au, while the ability of the Top site is weaker. Two new energy levels emerge after the adsorption at all sites; in DOS of the Hollow configuration, one locates at -0.15 eV, composed of Au 5d and O 2p electronic states, another just crosses through the Fermi level, consisting of Au 6s, H 1s and O 2p. In addition, Mulliken population analyses indicate that electron transfer takes place between the Au atom and the surface H and O atoms in the Hollow and Bridge configurations, which can be used to interpret the adsorption of Au onto the positions. However, neither H nor O chemically bonds with Au atom.
文摘In this paper, the adsorption process of calmodulin (CaM) on Au substrate was first investigated with electrochemical impedance spectroscopy (EIS) method. The result reveals that the adsorption of the protein-calmodulin contains two steps, i.e., one short quick step followed by a slow one. The complexation of calmodulin with Ca2+ was also first probed using EIS technique, in which the complexation of CaM with Ca2+ could be reflected by the change of apparent membrane capacitance(Capp) clearly. In all above measurements, a redox couple Fe(CN)63-/ Fe(CN)64- was used as probing-pin to reflect all the changes occurring in the above process. Our work suggests that some biological processes of CaM could be studied using EIS method conveniently.
文摘The adsorption characteristics of rare earth ion La(Ⅲ) on Yunnan bowl tea surface from aqueous solution and effects of various surfactants on the adsorption were studied. It was found that Yunnan bowl tea can adsorb strongly La(Ⅲ) and pH may affect drastically the adsorption amount of La(Ⅲ). The adsorption law of La(Ⅲ) on Yunnan bowl tea surface follows the Langmuir equation. The maximum adsorption amount of La(Ⅲ) can reach 15 mg·g (-1). A comprehensive adsorption model is suggested according to the experimental results.
基金This work was financially supported by the National Science Foundation of China(No.20376085).
文摘The adsorption of Fe(Ⅲ)ions from aqueous solution by chitosan alpha-ketoglutaric acid(KCTS)and hydroxamated chitosan alpha-ketoglutaric acid(HKCTS)was studied in a batch adsorption system.Experiments were carried out as function of pH,temperature,agitation rate and concentration of Fe(Ⅲ)ions.The Langmuir and Freundlich adsorption models were applied to describe the equilibrium isotherms and isotherm constants were determined.The Langmuir model agrees very well with experimental data.The pseudo-first-order a...
文摘Proteins adsorption at solid surfaces are of paramount important for many natural processes. However, the role of specific water in influencing the adsorption process has not been well understood. We used molecular dynamics simulation to study the adsorption of BPTI on Au surface in three water environments (dielectric constant model, partial and full solvation models). The result shows that a fast and strong adsorption can occur in the dielectric environment, which leads to significant structure changes, as confirmed by great deviation from the crystal structure, largely spreading along the Au surface, rapid lose in all secondary structures and the great number of atoms in contact with the surface. Compared to the dielectric model, slower adsorption and fewer changes in the calculated properties above are observed in the partial solvation system since the specific water layer weakens the adsorption effects. However, in the partial solvation system, the adsorption of polar Au surface causes a significant decrease in the specific hydration around the protein, which still results in large structure changes similar to the dielectric system, but with much less adsorption extent. Enough water molecules in the full solvation system could allow the protein to rotate, and to large extent preserve the protein native structure, thus leading to the slowest and weakest adsorption. On the whole, the effects of non-specific and specific solvation on the protein structure and adsorption dynamics are significantly different, highlighting the importance of the specific water molecule in the protein adsorption.