High concentrations of copper ions(Cu(Ⅱ)) in water will pose health risks to humans and the ecological environment. Therefore, this study aims to utilize ultrasonic-cured modified municipal solid waste incineration(M...High concentrations of copper ions(Cu(Ⅱ)) in water will pose health risks to humans and the ecological environment. Therefore, this study aims to utilize ultrasonic-cured modified municipal solid waste incineration(MSWI) fly ash for Cu(Ⅱ) adsorption to achieve the purpose of “treating waste by waste.” The effects of p H, adsorption time, initial concentration, and temperature on the modified MSWI fly ash’s adsorption efficiency were systematically studied in this article. The adsorption performance of the modified MSWI fly ash can be enhanced by the ultrasonic modification. At pH = 2, 3 and 4, the adsorption capacity of the modified MSWI fly ash for Cu(Ⅱ) increased by 2.7, 1.9 and 1.2 times, respectively. Furthermore, it was suggested that the adsorption process of the modified MSWI fly ash can be better simulated by the pseudo-second-order kinetic model, with a maximum adsorption capacity calculated by the Langmuir model of 24.196 mg.g-1. Additionally, the adsorption process is spontaneous,endothermic, and chemisorption-dominated from the thermodynamic studies(ΔH and ΔS > 0, ΔG < 0).Finally, the enhanced adsorption performance of the modified MSWI fly ash for Cu(Ⅱ) may be attributed to electrostatic interaction and chelation effects.展开更多
The adsorption and desorption of Cu(Ⅱ) and Pb(Ⅱ) on upland red soil,and paddy soils which were originated from the upland soil and cultivated for 8,15,35 and 85 years,were investigated using the batch method.The...The adsorption and desorption of Cu(Ⅱ) and Pb(Ⅱ) on upland red soil,and paddy soils which were originated from the upland soil and cultivated for 8,15,35 and 85 years,were investigated using the batch method.The study showed that the organic matter content and cation exchange capacity (CEC) of the soils are important factors controlling the adsorption and desorption of Cu(Ⅱ) and Pb(Ⅱ).The 15-Year paddy soil had the highest adsorption capacity for Pb(Ⅱ),followed by the 35-Year paddy soil.Both the 35-Year paddy soil and 15-Year paddy soil adsorbed more Cu(Ⅱ) than the upland soil and other paddy soils.The 15-Year paddy soils exhibited the highest desorption percentage for both Cu(Ⅱ) and Pb(Ⅱ).These results are consistent with the trend for the CEC of the soils tested.The high soil CEC contributes not only to the adsorption of Cu(Ⅱ) and Pb(Ⅱ) but also to the electrostatic adsorption of the two heavy metals by the soils.Lower desorption percentages for Cu(Ⅱ) (36.7% to 42.2%) and Pb(Ⅱ) (50.4% to 57.9%) were observed for the 85-Year paddy soil.The highest content of organic matter in the soil was responsible for the low desorption percentages for the two metals because the formation of the complexes between the organic matter and the metals could increase the stability of the heavy metals in the soils.展开更多
Surface ion-imprinted in combination with sol-gel process was applied to synthesis a new Pb(Ⅱ)-imprinted polymer for selective separation and enrichment of trace Pb(Ⅱ) from aqueous solution. The prepared materia...Surface ion-imprinted in combination with sol-gel process was applied to synthesis a new Pb(Ⅱ)-imprinted polymer for selective separation and enrichment of trace Pb(Ⅱ) from aqueous solution. The prepared material was characterized by using the infrared spectra, X-ray diffractometer, and scanning electron microscopy. The batch experiments were conducted to study the optimal adsorption condition of adsorption trace Pb(Ⅱ) from aqueous solutions on Pb(Ⅱ)-imprinted polymer. The equilibrium was achieved in approximately 4,0 h, and the experimental kinetic data were fitted the pseudo second-order model better. The maximum adsorption capacity was 22.7 mg/g, and the Langmuir equation fitted the adsorption isotherm data. The results of selectivity experiment showed that selectively adsorbed rate of Pb(Ⅱ) on Pb(Ⅱ)-imprinted polymer was higher than all other studied ions. Desorption conditions of the adsorbed Pb(Ⅱ) from the Pb(Ⅱ)-imprinted polymer were also studied in batch experiments. The prepared Pb(Ⅱ)-imprinted polymer was shown to be promising for the separation and enrichment of trace Pb(Ⅱ) from water samples. The adsorption and desorption mechanisms were proposed.展开更多
Two variable charge soils were incubated with biochars derived from straws of peanut, soybean, canola, and rice to investigate the effect of the biochars on their chemical properties and Pb(II) adsorption using batc...Two variable charge soils were incubated with biochars derived from straws of peanut, soybean, canola, and rice to investigate the effect of the biochars on their chemical properties and Pb(II) adsorption using batch experiments. The results showed soil cation exchange capacity (CEC) and pH significantly increased after 30 d of incubation with the biochars added. The incorporation of the biochars markedly increased the adsorption of Pb(II), and both the electrostatic and non-electrostatic adsorption mechanisms contributed to Pb(II) adsorption by the variable charge soils. Adsorption isotherms illustrated legume- straw derived biochars more greatly increased Pb(II) adsorption on soils through the non-electrostatic mechanism via the formation of surface complexes between Pb(II) and acid functional groups of the biochars than did non-legume straw biochars. The adsorption capacity of Pb(II) increased, while the desorption amount slightly decreased with the increasing suspension pH for the studied soils, especially in a high suspension pH, indicating that precipitation also plays an important role in immobilizing Pb(II) to the soils.展开更多
A niobate/titanat nanoflakes(Nb/TiNFs)composite was synthesized via the hydrothermal method and used to remove Pb(Ⅱ)from water.XRD,TEM,and SEM results indicate that Nb/TiNFs appear as nanoflakes,of which the primary ...A niobate/titanat nanoflakes(Nb/TiNFs)composite was synthesized via the hydrothermal method and used to remove Pb(Ⅱ)from water.XRD,TEM,and SEM results indicate that Nb/TiNFs appear as nanoflakes,of which the primary crystal phase is tri-titanate.Nb/TiNFs show rapid adsorption kinetics and the result fits well with the pseudo-second order model.The key mechanism of adsorption is ion-exchange between metal and-ONa/H.According to the Langmuir isotherm model,the maximum capacity of Pb(Ⅱ)is 488.323 mg·g^-1.The relatively low RL values indicate that Nb/TiNFs exhibit favorable adsorption of Pb(Ⅱ).Nb/TiNFs indicate high adsorption capacity over a broad pH range.Co-existing inorganic ions(Na+and Ca^2+)have a slight inhibition effect on adsorption,and HA moderately inhibits the adsorption of Pb(Ⅱ)on Nb/TiNFs.Because of the simple method of synthesis and high removal efficiency for heavy metals,Nb/TiNFs are a promising material in remediation of heavy metal polluted water.展开更多
In this work,the effect of ammonium sulfate on the adsorption characteristics of low-concentration Pb(Ⅱ)ions on the sulfidized hemimorphite surface was comprehensively investigated.The results showed that ammonium su...In this work,the effect of ammonium sulfate on the adsorption characteristics of low-concentration Pb(Ⅱ)ions on the sulfidized hemimorphite surface was comprehensively investigated.The results showed that ammonium sulfate could increase the maximum recovery of hemimorphite from 69.42%to 88.24%under a low concentration of Pb(Ⅱ)ions.On the hemimorphite surface pretreated with ammonium sulfate,the adsorption of Pb(Ⅱ)ions was enhanced and the main species of Pb adsorbed was changed from Pb―O/OH to PbS.This was due to the larger amount of ZnS providing more effective adsorption sites for Pb components to generate Pb S.Meanwhile,the intensity of ZnS decreased with the formation of PbS,demonstrating that ZnS was covered by PbS which formed later on the mineral surface.It was beneficial for the adsorption of butyl xanthate on the hemimorphite surface to form more hydrophobic substances.As a result,ammonium sulfate played a crucial role in realizing the efficient recovery of hemimorphite.展开更多
Coal fly ash (CFA) generated by coal-based thermal power plants is mainly composed of some oxides having high crystallinity, including quartz and mullite. In this study, the effect of CFA crystallinity toward its ca...Coal fly ash (CFA) generated by coal-based thermal power plants is mainly composed of some oxides having high crystallinity, including quartz and mullite. In this study, the effect of CFA crystallinity toward its capacity on Pb(Ⅱ) adsorption was investigated. CFA with various crystaUinity was obtanied by refluxing it with sodium hydroxide (NaOH) solution having various concentrations (1-7 M) at various temperature and reflux time. To evaluate the effect of crystallinity of treated CFA on the adsorption capacity, adsorption of Pb(Ⅱ) solution with treated CFA was carried out. The research shows that the reflux of CFA with NaOH solution leads to the crystallinity of quartz and mullite in CFA decreased. The decrease is proportional with the concentration increasing, the temperature elevation, and the longer time. The reflux using NaOH solution with high concentration (〉 3 M) in addition causes a decrease in the crystallinity of quartz and mullite, also results in the formation of hydroxysodalite. The decrease of the CFA crystalllinity gives an increase in CFA adsorption capacity toward Pb(Ⅱ) solution.展开更多
The adsorptive behavior of nanometer attapulgite modified by acid to Pb(Ⅱ) was investigated by flame atomic absorption spectrometry (FAAS) in this paper. The mainly effect parameters ott the adsorptive efficiency...The adsorptive behavior of nanometer attapulgite modified by acid to Pb(Ⅱ) was investigated by flame atomic absorption spectrometry (FAAS) in this paper. The mainly effect parameters ott the adsorptive efficiency of Pb(Ⅱ), such as the acidity of the solution, the amount of attapulgite, oscillation time and static time were studied. Also the influencing factors of the recovery efficiency of Pb(Ⅱ), including the concentration of hydrochloric acid, the volume of hydrochloric acid, oscillation time and static time were investigated. The adsorptive capacity of Pb(Ⅱ) on nanometer attapulgite was 26.5mg/g and the adsorptive capacity of first cycle and second cycle regenerated nanometer attapulgite were 26.5mg/g and 26.3mg/g, respectively. The results obtained indicated that the regenerated effect was good.展开更多
The adsorption characteristics of Pb on sediments of the Dianshan Lake in Shanghai was studied. The results show that (1) the relationship between the amount q of apparent equilibrium adsorption and the equilibrium co...The adsorption characteristics of Pb on sediments of the Dianshan Lake in Shanghai was studied. The results show that (1) the relationship between the amount q of apparent equilibrium adsorption and the equilibrium concentration C conforms to the Freundlich isothermal adsorption equation; (2) the adsorption and desorption of Pb on sediments are not reversible, that is, adsorption/desorption of Pb exhibits hysteresis; (3) Pb adsorption behavior is initially fast, followed by a slow reaction, and the slow reaction conforms to a reversible first-order reaction; (4) by deducing the Pb adsorption kinetics, four kinetics parameters n,k 1,k 2,q (max) independent of C could be worked out; (5) the equilibrium parameter (K) and the free energy change (ΔG) could also be determined, and the negative values of free energy change (ΔG) indicate the spontaneous nature of the adsorption.展开更多
Amino-functionalized magnetic nanoparticle (NH2-MNP) were prepared by a sol-gel approach. The adsorption behavior of Cu(II) ions on NH2-MNP was discussed systematically by batch experiments. The effects of initial...Amino-functionalized magnetic nanoparticle (NH2-MNP) were prepared by a sol-gel approach. The adsorption behavior of Cu(II) ions on NH2-MNP was discussed systematically by batch experiments. The effects of initial Cu(II) ions concentration, time, pH and temperature were investigated. In kinetic studies, the pseudo-second-order model was successfully employed, and the pseudo-first-order model substantiated that Cu(II) adsorption on NH2-MNP was a diffusion-based process. Langmuir model and Dubinin-Radushkevich model (R2〉0.99) were more corresponded with the adsorption isotherm data of Cu(II) ions than Freundlich model. The adsorption capacity was increased with the increment of temperature and pH. NH2-MNP remains excellent Cu(II) recoveries after reusing five adsorption and desorption cycles, making NH2-MNP a promising candidate for repetitively removing heavy metal ions from environmental water samples. According to the results obtained from adsorption activation energy and thermodynamic studies, it can be inferred that the main adsorption mechanism between absorbent and Cu(II) ions is ion exchange-surface complexation.展开更多
基金supported by the key program of the National Natural Science Foundation of China(52236008).
文摘High concentrations of copper ions(Cu(Ⅱ)) in water will pose health risks to humans and the ecological environment. Therefore, this study aims to utilize ultrasonic-cured modified municipal solid waste incineration(MSWI) fly ash for Cu(Ⅱ) adsorption to achieve the purpose of “treating waste by waste.” The effects of p H, adsorption time, initial concentration, and temperature on the modified MSWI fly ash’s adsorption efficiency were systematically studied in this article. The adsorption performance of the modified MSWI fly ash can be enhanced by the ultrasonic modification. At pH = 2, 3 and 4, the adsorption capacity of the modified MSWI fly ash for Cu(Ⅱ) increased by 2.7, 1.9 and 1.2 times, respectively. Furthermore, it was suggested that the adsorption process of the modified MSWI fly ash can be better simulated by the pseudo-second-order kinetic model, with a maximum adsorption capacity calculated by the Langmuir model of 24.196 mg.g-1. Additionally, the adsorption process is spontaneous,endothermic, and chemisorption-dominated from the thermodynamic studies(ΔH and ΔS > 0, ΔG < 0).Finally, the enhanced adsorption performance of the modified MSWI fly ash for Cu(Ⅱ) may be attributed to electrostatic interaction and chelation effects.
基金supported by the Knowledge Innovation Program Foundation of the Chinese Academy of Sciences(No. KZCX2-YW-Q10-3,ISSASIP0713)
文摘The adsorption and desorption of Cu(Ⅱ) and Pb(Ⅱ) on upland red soil,and paddy soils which were originated from the upland soil and cultivated for 8,15,35 and 85 years,were investigated using the batch method.The study showed that the organic matter content and cation exchange capacity (CEC) of the soils are important factors controlling the adsorption and desorption of Cu(Ⅱ) and Pb(Ⅱ).The 15-Year paddy soil had the highest adsorption capacity for Pb(Ⅱ),followed by the 35-Year paddy soil.Both the 35-Year paddy soil and 15-Year paddy soil adsorbed more Cu(Ⅱ) than the upland soil and other paddy soils.The 15-Year paddy soils exhibited the highest desorption percentage for both Cu(Ⅱ) and Pb(Ⅱ).These results are consistent with the trend for the CEC of the soils tested.The high soil CEC contributes not only to the adsorption of Cu(Ⅱ) and Pb(Ⅱ) but also to the electrostatic adsorption of the two heavy metals by the soils.Lower desorption percentages for Cu(Ⅱ) (36.7% to 42.2%) and Pb(Ⅱ) (50.4% to 57.9%) were observed for the 85-Year paddy soil.The highest content of organic matter in the soil was responsible for the low desorption percentages for the two metals because the formation of the complexes between the organic matter and the metals could increase the stability of the heavy metals in the soils.
基金supported by the National Natural Science Foundation of China (No. 20877036)
文摘Surface ion-imprinted in combination with sol-gel process was applied to synthesis a new Pb(Ⅱ)-imprinted polymer for selective separation and enrichment of trace Pb(Ⅱ) from aqueous solution. The prepared material was characterized by using the infrared spectra, X-ray diffractometer, and scanning electron microscopy. The batch experiments were conducted to study the optimal adsorption condition of adsorption trace Pb(Ⅱ) from aqueous solutions on Pb(Ⅱ)-imprinted polymer. The equilibrium was achieved in approximately 4,0 h, and the experimental kinetic data were fitted the pseudo second-order model better. The maximum adsorption capacity was 22.7 mg/g, and the Langmuir equation fitted the adsorption isotherm data. The results of selectivity experiment showed that selectively adsorbed rate of Pb(Ⅱ) on Pb(Ⅱ)-imprinted polymer was higher than all other studied ions. Desorption conditions of the adsorbed Pb(Ⅱ) from the Pb(Ⅱ)-imprinted polymer were also studied in batch experiments. The prepared Pb(Ⅱ)-imprinted polymer was shown to be promising for the separation and enrichment of trace Pb(Ⅱ) from water samples. The adsorption and desorption mechanisms were proposed.
基金supported by the Key Technoligies R&D Program of China during the 12th Five-Year Plan period (2012BAJ24B06)the National Natural Science Foundation of China (41230855)
文摘Two variable charge soils were incubated with biochars derived from straws of peanut, soybean, canola, and rice to investigate the effect of the biochars on their chemical properties and Pb(II) adsorption using batch experiments. The results showed soil cation exchange capacity (CEC) and pH significantly increased after 30 d of incubation with the biochars added. The incorporation of the biochars markedly increased the adsorption of Pb(II), and both the electrostatic and non-electrostatic adsorption mechanisms contributed to Pb(II) adsorption by the variable charge soils. Adsorption isotherms illustrated legume- straw derived biochars more greatly increased Pb(II) adsorption on soils through the non-electrostatic mechanism via the formation of surface complexes between Pb(II) and acid functional groups of the biochars than did non-legume straw biochars. The adsorption capacity of Pb(II) increased, while the desorption amount slightly decreased with the increasing suspension pH for the studied soils, especially in a high suspension pH, indicating that precipitation also plays an important role in immobilizing Pb(II) to the soils.
基金Funded by the National Natural Science Foundation of China(41272375)the Key Research and Development Plan of Shanxi Province(No.201903D121085)。
文摘A niobate/titanat nanoflakes(Nb/TiNFs)composite was synthesized via the hydrothermal method and used to remove Pb(Ⅱ)from water.XRD,TEM,and SEM results indicate that Nb/TiNFs appear as nanoflakes,of which the primary crystal phase is tri-titanate.Nb/TiNFs show rapid adsorption kinetics and the result fits well with the pseudo-second order model.The key mechanism of adsorption is ion-exchange between metal and-ONa/H.According to the Langmuir isotherm model,the maximum capacity of Pb(Ⅱ)is 488.323 mg·g^-1.The relatively low RL values indicate that Nb/TiNFs exhibit favorable adsorption of Pb(Ⅱ).Nb/TiNFs indicate high adsorption capacity over a broad pH range.Co-existing inorganic ions(Na+and Ca^2+)have a slight inhibition effect on adsorption,and HA moderately inhibits the adsorption of Pb(Ⅱ)on Nb/TiNFs.Because of the simple method of synthesis and high removal efficiency for heavy metals,Nb/TiNFs are a promising material in remediation of heavy metal polluted water.
基金the Fundamental Research Funds for the Central Universities(Nos.2022JCCXHH09 and 2022YJSHH01)the Yueqi Outstanding Scholar award of CUMTB+3 种基金the National Key R&D Program of China(No.SQ2022YFC2900065)the Ordos Science&Technology Plan(No.202204)the National Natural Science Foundation of China(No.52274283)the Open Research Fund of State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization(No.CNMRCUKF2107)。
文摘In this work,the effect of ammonium sulfate on the adsorption characteristics of low-concentration Pb(Ⅱ)ions on the sulfidized hemimorphite surface was comprehensively investigated.The results showed that ammonium sulfate could increase the maximum recovery of hemimorphite from 69.42%to 88.24%under a low concentration of Pb(Ⅱ)ions.On the hemimorphite surface pretreated with ammonium sulfate,the adsorption of Pb(Ⅱ)ions was enhanced and the main species of Pb adsorbed was changed from Pb―O/OH to PbS.This was due to the larger amount of ZnS providing more effective adsorption sites for Pb components to generate Pb S.Meanwhile,the intensity of ZnS decreased with the formation of PbS,demonstrating that ZnS was covered by PbS which formed later on the mineral surface.It was beneficial for the adsorption of butyl xanthate on the hemimorphite surface to form more hydrophobic substances.As a result,ammonium sulfate played a crucial role in realizing the efficient recovery of hemimorphite.
文摘Coal fly ash (CFA) generated by coal-based thermal power plants is mainly composed of some oxides having high crystallinity, including quartz and mullite. In this study, the effect of CFA crystallinity toward its capacity on Pb(Ⅱ) adsorption was investigated. CFA with various crystaUinity was obtanied by refluxing it with sodium hydroxide (NaOH) solution having various concentrations (1-7 M) at various temperature and reflux time. To evaluate the effect of crystallinity of treated CFA on the adsorption capacity, adsorption of Pb(Ⅱ) solution with treated CFA was carried out. The research shows that the reflux of CFA with NaOH solution leads to the crystallinity of quartz and mullite in CFA decreased. The decrease is proportional with the concentration increasing, the temperature elevation, and the longer time. The reflux using NaOH solution with high concentration (〉 3 M) in addition causes a decrease in the crystallinity of quartz and mullite, also results in the formation of hydroxysodalite. The decrease of the CFA crystalllinity gives an increase in CFA adsorption capacity toward Pb(Ⅱ) solution.
文摘The adsorptive behavior of nanometer attapulgite modified by acid to Pb(Ⅱ) was investigated by flame atomic absorption spectrometry (FAAS) in this paper. The mainly effect parameters ott the adsorptive efficiency of Pb(Ⅱ), such as the acidity of the solution, the amount of attapulgite, oscillation time and static time were studied. Also the influencing factors of the recovery efficiency of Pb(Ⅱ), including the concentration of hydrochloric acid, the volume of hydrochloric acid, oscillation time and static time were investigated. The adsorptive capacity of Pb(Ⅱ) on nanometer attapulgite was 26.5mg/g and the adsorptive capacity of first cycle and second cycle regenerated nanometer attapulgite were 26.5mg/g and 26.3mg/g, respectively. The results obtained indicated that the regenerated effect was good.
文摘The adsorption characteristics of Pb on sediments of the Dianshan Lake in Shanghai was studied. The results show that (1) the relationship between the amount q of apparent equilibrium adsorption and the equilibrium concentration C conforms to the Freundlich isothermal adsorption equation; (2) the adsorption and desorption of Pb on sediments are not reversible, that is, adsorption/desorption of Pb exhibits hysteresis; (3) Pb adsorption behavior is initially fast, followed by a slow reaction, and the slow reaction conforms to a reversible first-order reaction; (4) by deducing the Pb adsorption kinetics, four kinetics parameters n,k 1,k 2,q (max) independent of C could be worked out; (5) the equilibrium parameter (K) and the free energy change (ΔG) could also be determined, and the negative values of free energy change (ΔG) indicate the spontaneous nature of the adsorption.
基金Project(CXZZ11-0812)supported by Graduate Students Innovative Projects of Jiangsu Province,ChinaProject(J20122288)supported by Guizhou Provincial Natural Science Foundation of China+1 种基金Project(Y4110235)supported by Zhejiang Provincial Natural Science Foundation of ChinaProject(JKY2011008)supported by Fundamental Research Funds for the Central Universities,China
文摘Amino-functionalized magnetic nanoparticle (NH2-MNP) were prepared by a sol-gel approach. The adsorption behavior of Cu(II) ions on NH2-MNP was discussed systematically by batch experiments. The effects of initial Cu(II) ions concentration, time, pH and temperature were investigated. In kinetic studies, the pseudo-second-order model was successfully employed, and the pseudo-first-order model substantiated that Cu(II) adsorption on NH2-MNP was a diffusion-based process. Langmuir model and Dubinin-Radushkevich model (R2〉0.99) were more corresponded with the adsorption isotherm data of Cu(II) ions than Freundlich model. The adsorption capacity was increased with the increment of temperature and pH. NH2-MNP remains excellent Cu(II) recoveries after reusing five adsorption and desorption cycles, making NH2-MNP a promising candidate for repetitively removing heavy metal ions from environmental water samples. According to the results obtained from adsorption activation energy and thermodynamic studies, it can be inferred that the main adsorption mechanism between absorbent and Cu(II) ions is ion exchange-surface complexation.