The adsorption method has the advantages of low cost,high efficiency,and environmental friendliness in treating fluorinated wastewater,and the adsorbent material is the key.This study combines the inherent anion-excha...The adsorption method has the advantages of low cost,high efficiency,and environmental friendliness in treating fluorinated wastewater,and the adsorbent material is the key.This study combines the inherent anion-exchange adsorption properties of layered double hydroxides(LDHs).Self-supported porous adsorbent materials loaded with AFm and AFt were prepared from a composite cementitious system consisting of calcium aluminate cement(CAC)and flue gas desulfurization gypsum(FGDG)by chemical foaming technique.The mineral composition of the adsorbent material was characterized by X-ray diffraction(XRD)and Scanning electron microscopy(SEM).Through the static adsorption experiment,the adsorption effect of the mineral composition of the adsorbent on fluoride ions was deeply analyzed,and the adsorption mechanism was revealed.XRD and SEM showed that the main hydration phases of the composite cementitious system consisting of CAC and FGDG are AFm,AFt,AH_(3),and CaSO_(4)·2H_(2)O.FGDG accelerates the hydration process of CAC and inhibits the transformation of AFt to AFm.The AFt content increased,and the AFm content decreased or even disappeared as the amount of FGDG increased.Static adsorption experiment results showed that AFm and AFt in adsorbent materials could significantly enhance the adsorption of fluoride ions.The adsorption of F^(−)in aqueous solution by PAG tends more towards monolayer adsorption with a theoretical maximum capacity of 108.70 mg/g and is similar to the measured value of 112.77 mg/g.展开更多
Sulfate adsorption by poly(m-phenylenediamine)s(PmPDs) with various oxidation states synthesized through chemically oxidative polymerization was investigated.Series of sorption experiments were conducted,and the a...Sulfate adsorption by poly(m-phenylenediamine)s(PmPDs) with various oxidation states synthesized through chemically oxidative polymerization was investigated.Series of sorption experiments were conducted,and the adsorption mechanism and the relationship between oxidation state and adsorption performance were studied with the characterization of Fourier transform infrared spectroscopy(FTIR),X-ray photoelectron spectroscopy(XPS),pH tracking and energy calculation.The results show that the adsorption performance in acidic solution is improved with the decrease of oxidation state of poly(m-phenylenediamine)(PmPD).The rate constant is as high as 425.5 mg/(g·min) in the short equilibrium time of 30 min.The estimated highest adsorptivity of sulfate ions is 95.1%.According to the Langmuir equation,the adsorbance is 108.5 mg/g.The sulfate desorption efficiency is about 95% and the accumulative adsorbance is up to 487.95 mg/g in 5 cycles.展开更多
Compared chemical bonds change situation of coal surface and oxygen mole- cules before and after coal surface adsorption to three oxygen molecules,after adsorption each oxygen molecule's chemical bond got longer,b...Compared chemical bonds change situation of coal surface and oxygen mole- cules before and after coal surface adsorption to three oxygen molecules,after adsorption each oxygen molecule's chemical bond got longer,but had not broken,the coal surface's chemical bonds changed a little.It proves that the coal surface adsorption to five oxygen molecules is the physical adsorption and is the multilayer adsorption according to the op- timized geometry structure.The oxygen molecule's bond length that adsorbed by the side chain of coal surface changes most from 1.258 2×10^(-10) m to 1.316 8×10^(-10) m,which indi- cates this oxygen molecular to be the liveliest.The analysis of charge population reveals that how many electrons shift in the atom is directly proportional to the change of chemical bonds.The more electrons shift in the atom,the more molecule chemical bond changes. In the adsorption state,which is composed of coal surface and five oxygen molecules,the vibration frequency of oxygen molecules drops off,and the adsorption energy reached by calculation is 202.11 kJ/mol.展开更多
Amino-functionalized magnetic nanoparticle (NH2-MNP) were prepared by a sol-gel approach. The adsorption behavior of Cu(II) ions on NH2-MNP was discussed systematically by batch experiments. The effects of initial...Amino-functionalized magnetic nanoparticle (NH2-MNP) were prepared by a sol-gel approach. The adsorption behavior of Cu(II) ions on NH2-MNP was discussed systematically by batch experiments. The effects of initial Cu(II) ions concentration, time, pH and temperature were investigated. In kinetic studies, the pseudo-second-order model was successfully employed, and the pseudo-first-order model substantiated that Cu(II) adsorption on NH2-MNP was a diffusion-based process. Langmuir model and Dubinin-Radushkevich model (R2〉0.99) were more corresponded with the adsorption isotherm data of Cu(II) ions than Freundlich model. The adsorption capacity was increased with the increment of temperature and pH. NH2-MNP remains excellent Cu(II) recoveries after reusing five adsorption and desorption cycles, making NH2-MNP a promising candidate for repetitively removing heavy metal ions from environmental water samples. According to the results obtained from adsorption activation energy and thermodynamic studies, it can be inferred that the main adsorption mechanism between absorbent and Cu(II) ions is ion exchange-surface complexation.展开更多
The flotation behavior and adsorption mechanism of novel(1-hydroxy-2-methyl-2-octenyl) phosphonic acid(HEPA) to cassiterite were investigated by micro-flotation tests, zeta potential measurements, FTIR determinati...The flotation behavior and adsorption mechanism of novel(1-hydroxy-2-methyl-2-octenyl) phosphonic acid(HEPA) to cassiterite were investigated by micro-flotation tests, zeta potential measurements, FTIR determination and density functional theory(DFT) calculation. The flotation results demonstrated that HEPA exhibited superior collecting performance compared with styrene phosphonic acid(SPA). The cassiterite recovery maintained above 90% over a wide pH range of 2-9 with 50 mg/L HEPA. The results of zeta potential measurement and FTIR detection indicated that the adsorption of HEPA onto cassiterite was mainly attributed to the chemisorption between HEPA monoanions and Sn species on mineral surfaces. The DFT calculation results demonstrated that HEPA monoanions owned higher HOMO energy and exhibited a better affinity to cassiterite than SPA, which provided very clear evidence for the stronger collecting power of HEPA presented in floatation test and zeta potential measurement.展开更多
The internally balanced theory proposed by the Japanese researchers,solved the contradiction between adsorption ability and moving capability of the permanent magnetic adsorption mechanism.However,it still has some pr...The internally balanced theory proposed by the Japanese researchers,solved the contradiction between adsorption ability and moving capability of the permanent magnetic adsorption mechanism.However,it still has some problems when applied to wall climbing robots.This paper analyzes and improves this theory,and the improved internally balanced theory satisfies the requirements of the adsorption mechanism significantly.Finally,a practical prototype is proposed based on this method,and both the analysis using ANSYS and the experiment results justify the design validity.展开更多
The collecting performances of N-dodecylethylene-diamine (ND) to quartz and hematite were studied via single mineral flotation. Experimental results show that ND has stronger collecting ability to quartz than hemati...The collecting performances of N-dodecylethylene-diamine (ND) to quartz and hematite were studied via single mineral flotation. Experimental results show that ND has stronger collecting ability to quartz than hematite. Different floatability of quartz and hematite was presented in the existence of depressant. Compared with lauryl amine, ND has stronger collecting performances to quartz. Satisfied separation result of artificially mixed sample was acquired with iron grade of concentrate of 59.92% and iron recovery of 88.85% when pulp pH value was 7.27 with 41.7 mg/L collector and 3.33 mg/L starch. Polar group properties calculation results indicated that ND has stronger collecting capability and better selectivity than lauryl amine. Measurement results of zeta-potentials and infrared spectrum showed that hydrogen bonding adsorption and electrostatic adsorption occur between the surface of ND and quartz.展开更多
In this study,the impact of different reaction times on the preparation of powdered activated carbon(PAC)using a one-step rapid activation method under flue gas atmosphere is investigated,and the underlying reaction m...In this study,the impact of different reaction times on the preparation of powdered activated carbon(PAC)using a one-step rapid activation method under flue gas atmosphere is investigated,and the underlying reaction mechanism is summarized.Results indicate that the reaction process of this method can be divided into three stages:stage I is the rapid release of volatiles and the rapid consumption of O_(2),primarily occurring within a reaction time range of 0-0.5 s;stage II is mainly the continuous release and diffusion of volatiles,which is the carbonization and activation coupling reaction stage,and the carbonization process is the main in this stage.This stage mainly occurs at the reaction time range of 0.5 -2.0 s when SL-coal is used as material,and that is 0.5-3.0 s when JJ-coal is used as material;stage III is mainly the activation stage,during which activated components diffuse to both the surface and interior of particles.This stage mainly involves the reaction stage of CO_(2)and H2O(g)activation,and it mainly occurs at the reaction time range of 2.0-4.0 s when SL-coal is used as material,and that is 3.0-4.0 s when JJ-coal is used as material.Besides,the main function of the first two stages is to provide more diffusion channels and contact surfaces/activation sites for the diffusion and activation of the activated components in the third stage.Mastering the reaction mechanism would serve as a crucial reference and foundation for designing the structure,size of the reactor,and optimal positioning of the activator nozzle in PAC preparation.展开更多
High concentrations of copper ions(Cu(Ⅱ)) in water will pose health risks to humans and the ecological environment. Therefore, this study aims to utilize ultrasonic-cured modified municipal solid waste incineration(M...High concentrations of copper ions(Cu(Ⅱ)) in water will pose health risks to humans and the ecological environment. Therefore, this study aims to utilize ultrasonic-cured modified municipal solid waste incineration(MSWI) fly ash for Cu(Ⅱ) adsorption to achieve the purpose of “treating waste by waste.” The effects of p H, adsorption time, initial concentration, and temperature on the modified MSWI fly ash’s adsorption efficiency were systematically studied in this article. The adsorption performance of the modified MSWI fly ash can be enhanced by the ultrasonic modification. At pH = 2, 3 and 4, the adsorption capacity of the modified MSWI fly ash for Cu(Ⅱ) increased by 2.7, 1.9 and 1.2 times, respectively. Furthermore, it was suggested that the adsorption process of the modified MSWI fly ash can be better simulated by the pseudo-second-order kinetic model, with a maximum adsorption capacity calculated by the Langmuir model of 24.196 mg.g-1. Additionally, the adsorption process is spontaneous,endothermic, and chemisorption-dominated from the thermodynamic studies(ΔH and ΔS > 0, ΔG < 0).Finally, the enhanced adsorption performance of the modified MSWI fly ash for Cu(Ⅱ) may be attributed to electrostatic interaction and chelation effects.展开更多
Ni^(2+)and Cd^(2+)in wastewater accumulated through the ecological chain and could jeopardize human health.Adsorption of Ni^(2+)and Cd^(2+)from wastewater using recovered perlite was an important way to solve the prob...Ni^(2+)and Cd^(2+)in wastewater accumulated through the ecological chain and could jeopardize human health.Adsorption of Ni^(2+)and Cd^(2+)from wastewater using recovered perlite was an important way to solve the problem of resource utilization of solid waste from agar production.Our previous study confirmed that recovered perlite from agar extraction residue had better pore size and specific surface area than commercial perlite.However,the adsorption efficiency and adsorption mechanism of recovered perlite were the main factors limiting its adsorption application.The adsorption process of Ni^(2+)and Cd^(2+)by recovered perlite in aqueous solution was described by the pseudo-second-order kinetic equation,and the relevant adsorption mechanism was mainly chemisorption.Compared with commercial perlite,the adsorption removal rate of Ni^(2+)and Cd^(2+)by enzymatic recovered perlite could reach 92.9%and 89.2%,respectively,and were improved by 12.63%and 13.03%.Langmuir isothermal adsorption model could better describe the isothermal adsorption process of recovered perlite on heavy metal Ni^(2+)and Cd^(2+),and the relevant adsorption mechanism was mainly monolayer adsorption.The X-ray photoelectron spectroscopy(XPS)results indicated that the decrease of Si—O Si^(2+)hydroxyl coordination bond and the increase of C—Si bond might make the binding effect of recovered perlite with heavy metals stronger.The competitive adsorption of Ni^(2+)and Cd^(2+)by recovered perlite was still dominated by chemisorption and monolayer adsorption.This study was expected to provide a theoretical basis and technical support for the removal of Ni^(2+)and Cd^(2+)from wastewater using recovered perlite from seaweed residue.展开更多
Support vector regression (SVR) combined with particle swarm optimization for its parameter optimization is employed to establish a model for predicting the Henry constants of multi-walled carbon nanotubes (MWNTs)...Support vector regression (SVR) combined with particle swarm optimization for its parameter optimization is employed to establish a model for predicting the Henry constants of multi-walled carbon nanotubes (MWNTs) for adsorption of volatile organic compounds (VOCs). The prediction performance of SVR is compared with those of the model of theoretical linear salvation energy relationship (TLSER). By using leave-one-out cross validation of SVR test Henry constants for adsorption of 35 VOCs on MWNTs, the root mean square error is 0.080, the mean absolute percentage error is only 1.19~, and the correlation coefficient (R2) is as high as 0.997. Compared with the results of the TLSER model, it is shown that the estimated errors by SVR are ali smaller than those achieved by TLSER. It reveals that the generalization ability of SVR is superior to that of the TLSER model Meanwhile, multifactor analysis is adopted for investigation of the influences of each molecular structure descriptor on the Henry constants. According to the TLSER model, the adsorption mechanism of adsorption of carbon nanotubes of VOCs is mainly a result of van der Waals and interactions of hydrogen bonds. These can provide the theoretical support for the application of carbon nanotube adsorption of VOCs and can make up for the lack of experimental data.展开更多
The adsorption of sodium acetohydroxamate on the goethite or hematite surface was investi- gated by Fourier transform infrared spectroscopy (FT-IR), X-ray photoemission spectroscopy and periodic plane-wave density f...The adsorption of sodium acetohydroxamate on the goethite or hematite surface was investi- gated by Fourier transform infrared spectroscopy (FT-IR), X-ray photoemission spectroscopy and periodic plane-wave density functional theory (DFT) calculations. The core-level shifts and charge transfers of the adsorbed surface iron sites calculated by DFT with periodic in- terfacial structures were confronted to the X-ray photoemission experiments. FT-IR results reveal that the interracial structure of sodium acetohydroxamate adsorbed on the goethite or hematite surface may be assigned to a five-membered ring complex. In agreement with the adsorption energies determined by the DFT calculations, a five-membered ring complex is formed via bonding of one surface iron atom of goethite (101) or (100) to both oxygen atoms of hydroxamate group, and these two oxygen atoms of the hydroxamate group correspond- ingly attach to two neighboring iron atoms of the goethite surface. But a five-membered ring complex between two oxygen atoms of the hydroxamate group and one surface iron atom of hematite (001) is formed without any extra attachments. The calculated core-level shifts of Fe2p for the interracial structures are correspondingly in good agreement with the experimental observed one, which confirmed the reliability of the calculated results.展开更多
A novel collector 1-(2-hydroxyphenyl)hex-2-en-1-one oxime(HPHO)was synthesized from 2-hydroxy acetophenone and butyraldehyde.Its flotation performance and adsorption mechanism to malachite were investigated by flotati...A novel collector 1-(2-hydroxyphenyl)hex-2-en-1-one oxime(HPHO)was synthesized from 2-hydroxy acetophenone and butyraldehyde.Its flotation performance and adsorption mechanism to malachite were investigated by flotation test,zeta potential,Fourier transform infrared(FTIR)and X-ray photoelectron spectroscopy(XPS)analysis techniques.Compared with benzohydroxamic acid(BA),1-(2-hydroxyphenyl)ethan-1-one oxime(HPEO)and sodium isobutyl xanthate(SIBX),HPHO exhibited excellent collecting power to malachite without additional reagents,such as Na2S regulator and methyl isobutyl carbinol(MIBC)frother.Results of zeta potential indicated that HPHO was coated on malachite surfaces through a chemisorption process.FTIR and XPS data gave clear evidence for the formation of Cu−oxime complex on malachite surfaces after HPHO adsorption through the linkage between C=C,—OH,N—OH group and Cu species.展开更多
The preparation of novel dechlorination adsorbent by using the modified 13 X molecular sieve and its adsorption mechanism were studied. XRD and SEM analyses showed that the Ag-13 X molecular sieve revealed a new cryst...The preparation of novel dechlorination adsorbent by using the modified 13 X molecular sieve and its adsorption mechanism were studied. XRD and SEM analyses showed that the Ag-13 X molecular sieve revealed a new crystal plane,while other molecular sieve samples more or less contained some impurities. The BET data showed that only Ag^+ ions could enlarge the pore size and the pore volume at the same time. The NH_3-TPD diagram showed that the acid sites of the adsorbent increased after its modification by metal ions and only the Ag-13 X molecular sieve generated new medium strong acid sites. According to adsorption experiments conducted at different concentration and temperature, the dechlorination adsorption mechanism of Ag-13 X molecular sieve was a combination of physical adsorption and chemical adsorption which showed the different degree of influence at different temperatures.展开更多
Chitosan-coated fly ash(CWF)was prepared by the acid leaching-coating method.Chitosan and fly ash were crosslinked in the solution of acetic acid and sulfuric acid.The microstructure of CWF was conducted by scanning e...Chitosan-coated fly ash(CWF)was prepared by the acid leaching-coating method.Chitosan and fly ash were crosslinked in the solution of acetic acid and sulfuric acid.The microstructure of CWF was conducted by scanning electron microscope(SEM)and X-ray diffraction(XRD).The removal of Cr(VI)from water by CWF was studied by adsorption experiments.The composite prepared by the experiment developed a pore structure and a crystal structure similar to SiO_(2) and chitosan chain-like coating was formed on the surface of fly ash.The new modified material has larger surface roughness,specific surface area and more adsorption channels.The Cr(VI)was enriched in modified materials by electrostatic adsorption between CrO_(4)^(2−)、CrO_(7)^(2−)and-NH_(3)^(+) group and surface acid functional groups.The movement of Cr(VI)in solution is a diffusion process from the main body of the liquid phase to the surface of the liquid film.展开更多
Flotation behavior and adsorption mechanism of octyl hydroxamic acid(OHA)on wolframite were investigated through flotation experiments,adsorption tests,zeta-potential measurements,infrared spectroscopy and solution ch...Flotation behavior and adsorption mechanism of octyl hydroxamic acid(OHA)on wolframite were investigated through flotation experiments,adsorption tests,zeta-potential measurements,infrared spectroscopy and solution chemistry calculations.Results of flotation and adsorption experiments show that the maximum values of flotation recovery and adsorption capacity occur around p H 9.In term of the solution chemistry calculations,the concentration of metal hydroxamate is greater than that of metal tungstate and metal hydroxyl,and metal hydroxamate compounds are identified to be the main species on wolframite surface at p H region of 8-10,contributing to the increase of OHA adsorption and flotation performance.Results of zeta-potential and IR spectra demonstrate that OHA adsorbs onto wolframite surface by chemisorptions.Hydroxamate ions can bond with Mn_2+/Fe_2+cations of wolframite surface,forming metal hydroxamate compounds,which is a key factor in inducing the hydrophobicity of wolframite under the conditions of maximum flotation.展开更多
In this study,seven coal-based activated carbons(ACs)were adopted to remove trimethylamine(TMA)in an aqueous solution as environmentally friendly and harmless adsorbents.The results showed that columnar AC(CAC)had a c...In this study,seven coal-based activated carbons(ACs)were adopted to remove trimethylamine(TMA)in an aqueous solution as environmentally friendly and harmless adsorbents.The results showed that columnar AC(CAC)had a clear scale and honeycomb structures with few fragments and micropores,contributing to superior TMA removal capacity compared to granular AC(GAC)(71.67%for 6.0 mm CAC and 69.92%for 40–60 mesh GAC).In addition,the process of adsorption was accompanied by desorption,and the recommended absorbed time was 120–180 min.The short time to achieve equilibrium indicated that adsorption was kinetically controlled,and pseudo-second-order kinetics was more appropriate than pseudo-first-order kinetics in explaining the adsorption mechanism in both water and oyster enzymatic hydrolysate.The intraparticle diffusion model presented that the adsorption processes could be divided into three steps for GAC and two steps for CAC.The adsorption processes were consistent with the Freundlich model,indicating the existence of physisorption and chemisorption as multilayer adsorption.The results indicated that AC,especially CAC,has great potential for TMA elimination in aquatic product processing.展开更多
As a novel collector, O-isopropyl-N,N-diethyl thionocarbamate(IPDTC) was designed and synthesized for copper-sulfur flotation separation. Density functional theory calculations were performed to investigate the electr...As a novel collector, O-isopropyl-N,N-diethyl thionocarbamate(IPDTC) was designed and synthesized for copper-sulfur flotation separation. Density functional theory calculations were performed to investigate the electronic structures of IPDTC. The results showed that IPDTC had higher energy of the highest occupied molecular orbital but lower electronegativity than O-isopropyl-N-ethyl thionocarbamate(Z-200). It was predicted that IPDTC had strong collection ability according to the reaction energy criteria. Flotation results demonstrated that the collecting ability of IPDTC to chalcopyrite and pyrite was stronger than that of Z-200. Then, the flotation mechanism was analyzed by measurements of surface tension, adsorption capacity, XPS, FTIR and zeta potential. These results indicated that IPDTC could reduce the solution surface tension. The adsorption capacity of IPDTC on chalcopyrite was higher than that on pyrite, consistent with the results of the flotation tests. FTIR, zeta potential and XPS results also demonstrated that IPDTC was strongly absorbed on the chalcopyrite surface by formation of Cu—S—C bonds, but showed a weak affinity on the pyrite surface.展开更多
In present study,a novel organic depressant N-thiourea-maleamic acid(TMA)was synthesized and applied as a galena depressant in the flotation separation of Mo-Pb ores.The depression behaviors of TMA were tested through...In present study,a novel organic depressant N-thiourea-maleamic acid(TMA)was synthesized and applied as a galena depressant in the flotation separation of Mo-Pb ores.The depression behaviors of TMA were tested through flotation experiments.A wider separation window for single minerals over 90.0%was obtained at 30.0 mg/L TMA,confirming that TMA could depress galena significantly,while effected molybdenite floatability slightly.An effective separation was obtained for artificially mixed minerals and actual Mo-Pb ores.The adsorption mechanism on galena was revealed by UV-Vis spectra,zeta potential tests,Fourier transform infrared spectroscopy(FT-IR)analysis,contact angle tests and X-ray photoelectron spectroscopy(XPS)analysis.The zeta potentials of galena became more negative and the contact angle of galena dropped from initial 74.36°to 57.8°with 30.0 mg/L TMA depressant,inferring that TMA had adsorbed on galena surface.The analysis results of UV-Vis spectra,FT-IR and XPS gave further evidence that TMA might chemisorb on galena surface via Pb sites on galena surface and the thiourea group in TMA molecular structure,while the carboxyl group played a role of hydrophilicity.展开更多
基金supported by the National Natural Science Foundation of China(No.52279138)supported by Scientific Research Project of Shanxi Province(2018SF-367).
文摘The adsorption method has the advantages of low cost,high efficiency,and environmental friendliness in treating fluorinated wastewater,and the adsorbent material is the key.This study combines the inherent anion-exchange adsorption properties of layered double hydroxides(LDHs).Self-supported porous adsorbent materials loaded with AFm and AFt were prepared from a composite cementitious system consisting of calcium aluminate cement(CAC)and flue gas desulfurization gypsum(FGDG)by chemical foaming technique.The mineral composition of the adsorbent material was characterized by X-ray diffraction(XRD)and Scanning electron microscopy(SEM).Through the static adsorption experiment,the adsorption effect of the mineral composition of the adsorbent on fluoride ions was deeply analyzed,and the adsorption mechanism was revealed.XRD and SEM showed that the main hydration phases of the composite cementitious system consisting of CAC and FGDG are AFm,AFt,AH_(3),and CaSO_(4)·2H_(2)O.FGDG accelerates the hydration process of CAC and inhibits the transformation of AFt to AFm.The AFt content increased,and the AFm content decreased or even disappeared as the amount of FGDG increased.Static adsorption experiment results showed that AFm and AFt in adsorbent materials could significantly enhance the adsorption of fluoride ions.The adsorption of F^(−)in aqueous solution by PAG tends more towards monolayer adsorption with a theoretical maximum capacity of 108.70 mg/g and is similar to the measured value of 112.77 mg/g.
基金Project(50925417) supported by China National Funds for Distinguished Young ScientistsProject(50830301) supported by the National Natural Science Foundation of China+1 种基金Project(2009ZX07212-001-01) supported by Major Science and Technology Program for Water Pollution Control and Treatment of ChinaProject(2011) supported by Hunan Nonferrous Fundamental Research Fund
文摘Sulfate adsorption by poly(m-phenylenediamine)s(PmPDs) with various oxidation states synthesized through chemically oxidative polymerization was investigated.Series of sorption experiments were conducted,and the adsorption mechanism and the relationship between oxidation state and adsorption performance were studied with the characterization of Fourier transform infrared spectroscopy(FTIR),X-ray photoelectron spectroscopy(XPS),pH tracking and energy calculation.The results show that the adsorption performance in acidic solution is improved with the decrease of oxidation state of poly(m-phenylenediamine)(PmPD).The rate constant is as high as 425.5 mg/(g·min) in the short equilibrium time of 30 min.The estimated highest adsorptivity of sulfate ions is 95.1%.According to the Langmuir equation,the adsorbance is 108.5 mg/g.The sulfate desorption efficiency is about 95% and the accumulative adsorbance is up to 487.95 mg/g in 5 cycles.
基金National Natural Science Foundation(50474010)Eleventh Five Year Key Technologies(2006BAK03B05)
文摘Compared chemical bonds change situation of coal surface and oxygen mole- cules before and after coal surface adsorption to three oxygen molecules,after adsorption each oxygen molecule's chemical bond got longer,but had not broken,the coal surface's chemical bonds changed a little.It proves that the coal surface adsorption to five oxygen molecules is the physical adsorption and is the multilayer adsorption according to the op- timized geometry structure.The oxygen molecule's bond length that adsorbed by the side chain of coal surface changes most from 1.258 2×10^(-10) m to 1.316 8×10^(-10) m,which indi- cates this oxygen molecular to be the liveliest.The analysis of charge population reveals that how many electrons shift in the atom is directly proportional to the change of chemical bonds.The more electrons shift in the atom,the more molecule chemical bond changes. In the adsorption state,which is composed of coal surface and five oxygen molecules,the vibration frequency of oxygen molecules drops off,and the adsorption energy reached by calculation is 202.11 kJ/mol.
基金Project(CXZZ11-0812)supported by Graduate Students Innovative Projects of Jiangsu Province,ChinaProject(J20122288)supported by Guizhou Provincial Natural Science Foundation of China+1 种基金Project(Y4110235)supported by Zhejiang Provincial Natural Science Foundation of ChinaProject(JKY2011008)supported by Fundamental Research Funds for the Central Universities,China
文摘Amino-functionalized magnetic nanoparticle (NH2-MNP) were prepared by a sol-gel approach. The adsorption behavior of Cu(II) ions on NH2-MNP was discussed systematically by batch experiments. The effects of initial Cu(II) ions concentration, time, pH and temperature were investigated. In kinetic studies, the pseudo-second-order model was successfully employed, and the pseudo-first-order model substantiated that Cu(II) adsorption on NH2-MNP was a diffusion-based process. Langmuir model and Dubinin-Radushkevich model (R2〉0.99) were more corresponded with the adsorption isotherm data of Cu(II) ions than Freundlich model. The adsorption capacity was increased with the increment of temperature and pH. NH2-MNP remains excellent Cu(II) recoveries after reusing five adsorption and desorption cycles, making NH2-MNP a promising candidate for repetitively removing heavy metal ions from environmental water samples. According to the results obtained from adsorption activation energy and thermodynamic studies, it can be inferred that the main adsorption mechanism between absorbent and Cu(II) ions is ion exchange-surface complexation.
基金Project(2013AA064102)supported by the 12th Five-year Plan of National Scientific and Technological Program of China
文摘The flotation behavior and adsorption mechanism of novel(1-hydroxy-2-methyl-2-octenyl) phosphonic acid(HEPA) to cassiterite were investigated by micro-flotation tests, zeta potential measurements, FTIR determination and density functional theory(DFT) calculation. The flotation results demonstrated that HEPA exhibited superior collecting performance compared with styrene phosphonic acid(SPA). The cassiterite recovery maintained above 90% over a wide pH range of 2-9 with 50 mg/L HEPA. The results of zeta potential measurement and FTIR detection indicated that the adsorption of HEPA onto cassiterite was mainly attributed to the chemisorption between HEPA monoanions and Sn species on mineral surfaces. The DFT calculation results demonstrated that HEPA monoanions owned higher HOMO energy and exhibited a better affinity to cassiterite than SPA, which provided very clear evidence for the stronger collecting power of HEPA presented in floatation test and zeta potential measurement.
文摘The internally balanced theory proposed by the Japanese researchers,solved the contradiction between adsorption ability and moving capability of the permanent magnetic adsorption mechanism.However,it still has some problems when applied to wall climbing robots.This paper analyzes and improves this theory,and the improved internally balanced theory satisfies the requirements of the adsorption mechanism significantly.Finally,a practical prototype is proposed based on this method,and both the analysis using ANSYS and the experiment results justify the design validity.
基金Projects (2008BAB32B14, 2008BAB31B03) supported by the National Key Technology R&D Program of China Project (51004027) supported by the National Natural Science Foundation of China
文摘The collecting performances of N-dodecylethylene-diamine (ND) to quartz and hematite were studied via single mineral flotation. Experimental results show that ND has stronger collecting ability to quartz than hematite. Different floatability of quartz and hematite was presented in the existence of depressant. Compared with lauryl amine, ND has stronger collecting performances to quartz. Satisfied separation result of artificially mixed sample was acquired with iron grade of concentrate of 59.92% and iron recovery of 88.85% when pulp pH value was 7.27 with 41.7 mg/L collector and 3.33 mg/L starch. Polar group properties calculation results indicated that ND has stronger collecting capability and better selectivity than lauryl amine. Measurement results of zeta-potentials and infrared spectrum showed that hydrogen bonding adsorption and electrostatic adsorption occur between the surface of ND and quartz.
基金supported by the Qingdao Postdoctoral Program Funding(QDBSH20220202045)Shandong provincial Natural Science Foundation(ZR2021ME049,ZR2022ME176)+1 种基金National Natural Science Foundation of China(22078176)Taishan Industrial Experts Program(TSCX202306135).
文摘In this study,the impact of different reaction times on the preparation of powdered activated carbon(PAC)using a one-step rapid activation method under flue gas atmosphere is investigated,and the underlying reaction mechanism is summarized.Results indicate that the reaction process of this method can be divided into three stages:stage I is the rapid release of volatiles and the rapid consumption of O_(2),primarily occurring within a reaction time range of 0-0.5 s;stage II is mainly the continuous release and diffusion of volatiles,which is the carbonization and activation coupling reaction stage,and the carbonization process is the main in this stage.This stage mainly occurs at the reaction time range of 0.5 -2.0 s when SL-coal is used as material,and that is 0.5-3.0 s when JJ-coal is used as material;stage III is mainly the activation stage,during which activated components diffuse to both the surface and interior of particles.This stage mainly involves the reaction stage of CO_(2)and H2O(g)activation,and it mainly occurs at the reaction time range of 2.0-4.0 s when SL-coal is used as material,and that is 3.0-4.0 s when JJ-coal is used as material.Besides,the main function of the first two stages is to provide more diffusion channels and contact surfaces/activation sites for the diffusion and activation of the activated components in the third stage.Mastering the reaction mechanism would serve as a crucial reference and foundation for designing the structure,size of the reactor,and optimal positioning of the activator nozzle in PAC preparation.
基金supported by the key program of the National Natural Science Foundation of China(52236008).
文摘High concentrations of copper ions(Cu(Ⅱ)) in water will pose health risks to humans and the ecological environment. Therefore, this study aims to utilize ultrasonic-cured modified municipal solid waste incineration(MSWI) fly ash for Cu(Ⅱ) adsorption to achieve the purpose of “treating waste by waste.” The effects of p H, adsorption time, initial concentration, and temperature on the modified MSWI fly ash’s adsorption efficiency were systematically studied in this article. The adsorption performance of the modified MSWI fly ash can be enhanced by the ultrasonic modification. At pH = 2, 3 and 4, the adsorption capacity of the modified MSWI fly ash for Cu(Ⅱ) increased by 2.7, 1.9 and 1.2 times, respectively. Furthermore, it was suggested that the adsorption process of the modified MSWI fly ash can be better simulated by the pseudo-second-order kinetic model, with a maximum adsorption capacity calculated by the Langmuir model of 24.196 mg.g-1. Additionally, the adsorption process is spontaneous,endothermic, and chemisorption-dominated from the thermodynamic studies(ΔH and ΔS > 0, ΔG < 0).Finally, the enhanced adsorption performance of the modified MSWI fly ash for Cu(Ⅱ) may be attributed to electrostatic interaction and chelation effects.
基金financially supported by National Natural Science Foundation of China(22038012,32172339,and 22178142)National Key Research and Development Program(2023YF D2100603)。
文摘Ni^(2+)and Cd^(2+)in wastewater accumulated through the ecological chain and could jeopardize human health.Adsorption of Ni^(2+)and Cd^(2+)from wastewater using recovered perlite was an important way to solve the problem of resource utilization of solid waste from agar production.Our previous study confirmed that recovered perlite from agar extraction residue had better pore size and specific surface area than commercial perlite.However,the adsorption efficiency and adsorption mechanism of recovered perlite were the main factors limiting its adsorption application.The adsorption process of Ni^(2+)and Cd^(2+)by recovered perlite in aqueous solution was described by the pseudo-second-order kinetic equation,and the relevant adsorption mechanism was mainly chemisorption.Compared with commercial perlite,the adsorption removal rate of Ni^(2+)and Cd^(2+)by enzymatic recovered perlite could reach 92.9%and 89.2%,respectively,and were improved by 12.63%and 13.03%.Langmuir isothermal adsorption model could better describe the isothermal adsorption process of recovered perlite on heavy metal Ni^(2+)and Cd^(2+),and the relevant adsorption mechanism was mainly monolayer adsorption.The X-ray photoelectron spectroscopy(XPS)results indicated that the decrease of Si—O Si^(2+)hydroxyl coordination bond and the increase of C—Si bond might make the binding effect of recovered perlite with heavy metals stronger.The competitive adsorption of Ni^(2+)and Cd^(2+)by recovered perlite was still dominated by chemisorption and monolayer adsorption.This study was expected to provide a theoretical basis and technical support for the removal of Ni^(2+)and Cd^(2+)from wastewater using recovered perlite from seaweed residue.
基金Supported by the Innovative Talent Funds for Project 985 under Grant No WLYJSBJRCTD201102the Fundamental Research Funds for the Central Universities under Grant No CQDXWL-2013-014+1 种基金the Natural Science Foundation of Chongqing under Grant No CSTC2006BB5240the Program for New Century Excellent Talents in Universities of China under Grant No NCET-07-0903
文摘Support vector regression (SVR) combined with particle swarm optimization for its parameter optimization is employed to establish a model for predicting the Henry constants of multi-walled carbon nanotubes (MWNTs) for adsorption of volatile organic compounds (VOCs). The prediction performance of SVR is compared with those of the model of theoretical linear salvation energy relationship (TLSER). By using leave-one-out cross validation of SVR test Henry constants for adsorption of 35 VOCs on MWNTs, the root mean square error is 0.080, the mean absolute percentage error is only 1.19~, and the correlation coefficient (R2) is as high as 0.997. Compared with the results of the TLSER model, it is shown that the estimated errors by SVR are ali smaller than those achieved by TLSER. It reveals that the generalization ability of SVR is superior to that of the TLSER model Meanwhile, multifactor analysis is adopted for investigation of the influences of each molecular structure descriptor on the Henry constants. According to the TLSER model, the adsorption mechanism of adsorption of carbon nanotubes of VOCs is mainly a result of van der Waals and interactions of hydrogen bonds. These can provide the theoretical support for the application of carbon nanotube adsorption of VOCs and can make up for the lack of experimental data.
文摘The adsorption of sodium acetohydroxamate on the goethite or hematite surface was investi- gated by Fourier transform infrared spectroscopy (FT-IR), X-ray photoemission spectroscopy and periodic plane-wave density functional theory (DFT) calculations. The core-level shifts and charge transfers of the adsorbed surface iron sites calculated by DFT with periodic in- terfacial structures were confronted to the X-ray photoemission experiments. FT-IR results reveal that the interracial structure of sodium acetohydroxamate adsorbed on the goethite or hematite surface may be assigned to a five-membered ring complex. In agreement with the adsorption energies determined by the DFT calculations, a five-membered ring complex is formed via bonding of one surface iron atom of goethite (101) or (100) to both oxygen atoms of hydroxamate group, and these two oxygen atoms of the hydroxamate group correspond- ingly attach to two neighboring iron atoms of the goethite surface. But a five-membered ring complex between two oxygen atoms of the hydroxamate group and one surface iron atom of hematite (001) is formed without any extra attachments. The calculated core-level shifts of Fe2p for the interracial structures are correspondingly in good agreement with the experimental observed one, which confirmed the reliability of the calculated results.
基金Projects(2018GDASCX-0934,2020GDASYL-20200302009)supported by Guangdong Academy of Sciences,China。
文摘A novel collector 1-(2-hydroxyphenyl)hex-2-en-1-one oxime(HPHO)was synthesized from 2-hydroxy acetophenone and butyraldehyde.Its flotation performance and adsorption mechanism to malachite were investigated by flotation test,zeta potential,Fourier transform infrared(FTIR)and X-ray photoelectron spectroscopy(XPS)analysis techniques.Compared with benzohydroxamic acid(BA),1-(2-hydroxyphenyl)ethan-1-one oxime(HPEO)and sodium isobutyl xanthate(SIBX),HPHO exhibited excellent collecting power to malachite without additional reagents,such as Na2S regulator and methyl isobutyl carbinol(MIBC)frother.Results of zeta potential indicated that HPHO was coated on malachite surfaces through a chemisorption process.FTIR and XPS data gave clear evidence for the formation of Cu−oxime complex on malachite surfaces after HPHO adsorption through the linkage between C=C,—OH,N—OH group and Cu species.
文摘The preparation of novel dechlorination adsorbent by using the modified 13 X molecular sieve and its adsorption mechanism were studied. XRD and SEM analyses showed that the Ag-13 X molecular sieve revealed a new crystal plane,while other molecular sieve samples more or less contained some impurities. The BET data showed that only Ag^+ ions could enlarge the pore size and the pore volume at the same time. The NH_3-TPD diagram showed that the acid sites of the adsorbent increased after its modification by metal ions and only the Ag-13 X molecular sieve generated new medium strong acid sites. According to adsorption experiments conducted at different concentration and temperature, the dechlorination adsorption mechanism of Ag-13 X molecular sieve was a combination of physical adsorption and chemical adsorption which showed the different degree of influence at different temperatures.
基金Project(41602310)supported by the National Natural Science Foundation of ChinaProject(2017M611044)supported by the China Postdoctoral Science Foundation。
文摘Chitosan-coated fly ash(CWF)was prepared by the acid leaching-coating method.Chitosan and fly ash were crosslinked in the solution of acetic acid and sulfuric acid.The microstructure of CWF was conducted by scanning electron microscope(SEM)and X-ray diffraction(XRD).The removal of Cr(VI)from water by CWF was studied by adsorption experiments.The composite prepared by the experiment developed a pore structure and a crystal structure similar to SiO_(2) and chitosan chain-like coating was formed on the surface of fly ash.The new modified material has larger surface roughness,specific surface area and more adsorption channels.The Cr(VI)was enriched in modified materials by electrostatic adsorption between CrO_(4)^(2−)、CrO_(7)^(2−)and-NH_(3)^(+) group and surface acid functional groups.The movement of Cr(VI)in solution is a diffusion process from the main body of the liquid phase to the surface of the liquid film.
基金Project(2014CB643402) supported by the National Basic Research Program of ChinaProject(CX2013B082) supported by the Hunan Provincial Innovation Foundation for Postgraduate,China
文摘Flotation behavior and adsorption mechanism of octyl hydroxamic acid(OHA)on wolframite were investigated through flotation experiments,adsorption tests,zeta-potential measurements,infrared spectroscopy and solution chemistry calculations.Results of flotation and adsorption experiments show that the maximum values of flotation recovery and adsorption capacity occur around p H 9.In term of the solution chemistry calculations,the concentration of metal hydroxamate is greater than that of metal tungstate and metal hydroxyl,and metal hydroxamate compounds are identified to be the main species on wolframite surface at p H region of 8-10,contributing to the increase of OHA adsorption and flotation performance.Results of zeta-potential and IR spectra demonstrate that OHA adsorbs onto wolframite surface by chemisorptions.Hydroxamate ions can bond with Mn_2+/Fe_2+cations of wolframite surface,forming metal hydroxamate compounds,which is a key factor in inducing the hydrophobicity of wolframite under the conditions of maximum flotation.
基金the National Key R&D Program of China(No.2018YFC0311202)the Key-Area Research and Development Program of Guang-dong Province(No.2020B1111030004)+4 种基金the Science and Technology Program of Guangzhou,China(Nos.201804010364 and 201804010321)the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(No.GML2019ZD0406)the National Key R&D Program of China(No.2018YFC0311202)the Natural Science Foun-dation of Guangdong Province,China(Nos.2018A030313088,2018A030313626)the Academician Work-station Foundation for Young Scientists of Chinese Aca-demy of Sciences Guangzhou Branch(No.20180313).
文摘In this study,seven coal-based activated carbons(ACs)were adopted to remove trimethylamine(TMA)in an aqueous solution as environmentally friendly and harmless adsorbents.The results showed that columnar AC(CAC)had a clear scale and honeycomb structures with few fragments and micropores,contributing to superior TMA removal capacity compared to granular AC(GAC)(71.67%for 6.0 mm CAC and 69.92%for 40–60 mesh GAC).In addition,the process of adsorption was accompanied by desorption,and the recommended absorbed time was 120–180 min.The short time to achieve equilibrium indicated that adsorption was kinetically controlled,and pseudo-second-order kinetics was more appropriate than pseudo-first-order kinetics in explaining the adsorption mechanism in both water and oyster enzymatic hydrolysate.The intraparticle diffusion model presented that the adsorption processes could be divided into three steps for GAC and two steps for CAC.The adsorption processes were consistent with the Freundlich model,indicating the existence of physisorption and chemisorption as multilayer adsorption.The results indicated that AC,especially CAC,has great potential for TMA elimination in aquatic product processing.
基金financial supports from the Open Foundation of State Key Laboratory of Mineral Processing,China (Nos.BGRIMM-KJSKL-2019-06,BGRIMMKJSKL-2022-13)the Open Fund of State Key Laboratory of Comprehensive Utilization of Low-Grade,China (No.ZJKY2017(B)KFJJ003)。
文摘As a novel collector, O-isopropyl-N,N-diethyl thionocarbamate(IPDTC) was designed and synthesized for copper-sulfur flotation separation. Density functional theory calculations were performed to investigate the electronic structures of IPDTC. The results showed that IPDTC had higher energy of the highest occupied molecular orbital but lower electronegativity than O-isopropyl-N-ethyl thionocarbamate(Z-200). It was predicted that IPDTC had strong collection ability according to the reaction energy criteria. Flotation results demonstrated that the collecting ability of IPDTC to chalcopyrite and pyrite was stronger than that of Z-200. Then, the flotation mechanism was analyzed by measurements of surface tension, adsorption capacity, XPS, FTIR and zeta potential. These results indicated that IPDTC could reduce the solution surface tension. The adsorption capacity of IPDTC on chalcopyrite was higher than that on pyrite, consistent with the results of the flotation tests. FTIR, zeta potential and XPS results also demonstrated that IPDTC was strongly absorbed on the chalcopyrite surface by formation of Cu—S—C bonds, but showed a weak affinity on the pyrite surface.
基金financial supports provided by National Key R&D Program of China(No.2017YFE0133100)National Natural Science Foundation of China(No.51974030)+1 种基金State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization(No.CNMRCUKF2102)the BGRIMM fund program(Grant No.02-1903).
文摘In present study,a novel organic depressant N-thiourea-maleamic acid(TMA)was synthesized and applied as a galena depressant in the flotation separation of Mo-Pb ores.The depression behaviors of TMA were tested through flotation experiments.A wider separation window for single minerals over 90.0%was obtained at 30.0 mg/L TMA,confirming that TMA could depress galena significantly,while effected molybdenite floatability slightly.An effective separation was obtained for artificially mixed minerals and actual Mo-Pb ores.The adsorption mechanism on galena was revealed by UV-Vis spectra,zeta potential tests,Fourier transform infrared spectroscopy(FT-IR)analysis,contact angle tests and X-ray photoelectron spectroscopy(XPS)analysis.The zeta potentials of galena became more negative and the contact angle of galena dropped from initial 74.36°to 57.8°with 30.0 mg/L TMA depressant,inferring that TMA had adsorbed on galena surface.The analysis results of UV-Vis spectra,FT-IR and XPS gave further evidence that TMA might chemisorb on galena surface via Pb sites on galena surface and the thiourea group in TMA molecular structure,while the carboxyl group played a role of hydrophilicity.