Flue gas and coal bed methane are two important sources of greenhouse gases.Pressure swing adsorption process has a wide range of application in the field of gas separation,and the selection of adsorbent is crucial.In...Flue gas and coal bed methane are two important sources of greenhouse gases.Pressure swing adsorption process has a wide range of application in the field of gas separation,and the selection of adsorbent is crucial.In this regard,in order to assess the better adsorbent for separating CO_(2) from flue gas and CH_(4) from coal bed methane,adsorption isotherms of CO_(2),CH_(4) and N_(2) on activated carbon and carbon molecular sieve are measured at 303.15,318.15 and 333.15 K,and up to 250 kPa.The experimental data fit better with Langmuir 2 compared to Langmuir 3 and Langmuir-Freundlich models,and Clausius-Clapeyron equation was used to calculate the isosteric heat.Both the order of the adsorbed amount and the adsorption heat on the two adsorbents are CO_(2)>CH_(4)>N_(2).The adsorption kinetics are calculated by the pseudo-first kinetic model,and the order of adsorption rates on activated carbon is N_(2)-CH_(4)>CO_(2),while on carbon molecular sieve,it is CO_(2)-N_(2)>CH_(4).It is shown that relative molecular mass and adsorption heat are the primary effect on kinetics for activated carbon,while kinetic diameter is the main resistance factor for carbon molecular sieve.Moreover,the adsorption selectivity of CH_(4)/N_(2) and CO_(2)/N_(2) were estimated with the ideal adsorption solution theory,and carbon molecular sieve performed best at 318.15 K for both CO_(2) and CH_(4) separation.The study suggested that activated carbon is a better choice for separating flue gas and carbon molecular sieve can be a strong candidate for separating coal bed methane.展开更多
Methane adsorption is a critical assessment of the gas storage capacity(GSC)of shales with geological conditions.Although the related research of marine shales has been well-illustrated,the methane adsorption of marin...Methane adsorption is a critical assessment of the gas storage capacity(GSC)of shales with geological conditions.Although the related research of marine shales has been well-illustrated,the methane adsorption of marine-continental transitional(MCT)shales is still ambiguous.In this study,a method of combining experimental data with analytical models was used to investigate the methane adsorption characteristics and GSC of MCT shales collected from the Qinshui Basin,China.The Ono-Kondo model was used to fit the adsorption data to obtain the adsorption parameters.Subsequently,the geological model of GSC based on pore evolution was constructed using a representative shale sample with a total organic carbon(TOC)content of 1.71%,and the effects of reservoir pressure coefficient and water saturation on GSC were explored.In experimental results,compared to the composition of the MCT shale,the pore structure dominates the methane adsorption,and meanwhile,the maturity mainly governs the pore structure.Besides,maturity in the middle-eastern region of the Qinshui Basin shows a strong positive correlation with burial depth.The two parameters,micropore pore volume and non-micropore surface area,induce a good fit for the adsorption capacity data of the shale.In simulation results,the depth,pressure coefficient,and water saturation of the shale all affect the GSC.It demonstrates a promising shale gas potential of the MCT shale in a deeper block,especially with low water saturation.Specifically,the economic feasibility of shale gas could be a major consideration for the shale with a depth of<800 m and/or water saturation>60%in the Yushe-Wuxiang area.This study provides a valuable reference for the reservoir evaluation and favorable block search of MCT shale gas.展开更多
BACKGROUND Aortic coarctation is a potentially fatal condition that is primarily treated surgically.Despite successful procedures,patients frequently experience postoperative anxiety and depression,which can hinder re...BACKGROUND Aortic coarctation is a potentially fatal condition that is primarily treated surgically.Despite successful procedures,patients frequently experience postoperative anxiety and depression,which can hinder recovery and worsen outcomes.Pharmacological interventions,such as 5-hydroxytryptamine(5-HT)and norepinephrine reuptake inhibitors,are commonly prescribed;however,their efficacy alone or in combination with non-invasive brain stimulation techniques,such as repetitive transcranial magnetic stimulation(TMS),remains unclear.AIM To assess the effect of medications and TMS on post-aortic surgery anxiety and depression.METHODS We analyzed the outcomes of 151 patients with anxiety and depression who were hospitalized for aortic dissection between January 2020 and September 2022.Using the random number table method,75 and 76 patients were allocated to the normal control and study groups,respectively.All the patients were treated using routine procedures.The control group was administered anti-anxiety and antidepression drugs,whereas the study group was treated with TMS in addition to these medications.The patients in both groups showed improvement after two courses of treatment.The Hamilton Anxiety Scale(HAMA)and the Hamilton Depression Scale(HAMD)were used to assess anxiety and depression,respectively.The serum levels of brain-derived neurotrophic factor(BDNF)and 5-HT were determined using enzyme-linked immunosorbent assay.The Pittsburgh Sleep Quality Index(PSQI)was used to estimate sleep quality,and the Repeatable Battery for the Assessment of Neuropsychological Status(RBANS)was used to assess cognitive function.RESULTS The HAMD and HAMA scores reduced in 2 groups,with the study group achieving a lower level than control(P<0.05).In the control group,43 patients recovered,17 showed improvement,and 15 were deemed invalid.In the study group,52 recovered,20 improved,and four were invalid.The efficacy rate in study group was 94.74%compared to 80.00%in control(P<0.05).The BDNF and 5-HT levels increased in both groups,with higher levels observed in the experimental group(P<0.05).Moreover,the PSQI scores decreased in 2 groups,but were lower in the intervention group than control(P<0.05).The scores of the RBANS items increased,with the study group scoring higher than control(P<0.05).CONCLUSION Combining anti-anxiety and anti-depressive drugs with repetitive TMS after aortic surgery may enhance mood and treatment outcomes,offering a promising clinical approach.展开更多
The goal of this work is to improve the simultaneous removal of Pb2+, Cu2+, Zn2+, and Cd2+ ions from synthetic wastewater in a fixed bed column by incorporating sodium dodecyl sulfate (SDS) onto the surface of activat...The goal of this work is to improve the simultaneous removal of Pb2+, Cu2+, Zn2+, and Cd2+ ions from synthetic wastewater in a fixed bed column by incorporating sodium dodecyl sulfate (SDS) onto the surface of activated carbon made from coconut shells. The activated carbons were characterized using Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy-energy dispersive x-ray (SEM-EDX). The adsorption column dynamics were studied by varying the flow rates (5, 10 and 15 mL/min), bed heights (10, 15 and 20 cm), and initial concentrations (50, 150, and 250 mg/L). The activated carbon has a pore volume of 0.715 cm3/g and a BET-specific surface area of 1410 m2/g. Sodium dodecyl sulfate (SDS) surfactant incorporation onto the surface of the activated carbon enhances its capacity for simultaneous adsorption of Pb2+, Cu2+, Zn2+, and Cd2+ from the aqueous medium. The affinity of the heavy metals to both unmodified (AC) and modified (AC-SDS) activated carbons followed the order of Pb2+ > Cu2+ > Zn2+ > Cd2+. The dynamic adsorption of the column depends on the flow rate, bed height, initial metal concentration, and SDS surface modification. With a 5 mL/min flow rate, a 20 cm bed height, and a 50 mg/L initial metal concentration, a maximum break-through time of 150 minutes for the unmodified activated carbon (AC) and 180 minutes for the SDS-modified activated carbon (AC-SDS) was reached.展开更多
The etiological factors contributing to depression and other neuropsychiatric disorders are largely undefined. Endoplasmic reticulum stress pathways and autophagy are well-defined mechanisms that play critical functio...The etiological factors contributing to depression and other neuropsychiatric disorders are largely undefined. Endoplasmic reticulum stress pathways and autophagy are well-defined mechanisms that play critical functions in recognizing and resolving cellular stress and are possible targets for the pathophysiology and treatment of psychiatric and neurologic illnesses. An increasing number of studies indicate the involvement of endoplasmic reticulum stress and autophagy in the control of neuroinflammation, a contributing factor to multiple neuropsychiatric illnesses. Initial inflammatory triggers induce endoplasmic reticulum stress, leading to neuroinflammatory responses. Subsequently, induction of autophagy by neurosteroids and other signaling pathways that converge on autophagy induction are thought to participate in resolving neuroinflammation. The aim of this review is to summarize our current understanding of the molecular mechanisms governing the induction of endoplasmic reticulum stress, autophagy, and neuroinflammation in the central nervous system. Studies focused on innate immune factors, including neurosteroids with anti-inflammatory roles will be reviewed. In the context of depression, animal models that led to our current understanding of molecular mechanisms underlying depression will be highlighted, including the roles of sigma 1 receptors and pharmacological agents that dampen endoplasmic reticulum stress and associated neuroinflammation.展开更多
The Tianshan range,a Paleozoic orogenic belt in Central Asia,has undergone multiple phases of tectonic activities characterized by the N-S compression after the early Mesozoic,including the far-field effects of the Ce...The Tianshan range,a Paleozoic orogenic belt in Central Asia,has undergone multiple phases of tectonic activities characterized by the N-S compression after the early Mesozoic,including the far-field effects of the Cenozoic Indian-Asian collision.However,there are limited reports on the tectonic deformation and initiation of Triassic intracontinental deformation in the Tianshan range.Understanding this structural context is crucial for interpreting the early intracontinental deformation history of the Eurasian continent during the early Mesozoic.Growth strata and syn-tectonic sediments provide a rich source of information on tectonic activities and have been extensively used in the studies of orogenic belts.Based on detail fieldwork conducted in this study,the middle-late Triassic Kelamayi Formation of the northern Kuqa Depression in the southern Tianshan fold-thrust belt has been identified as the typical syn-tectonic growth strata.The youngest detrital zircon component in two lithic sandstone samples from the bottom and top of the Kelamayi growth strata yielded U-Pb ages of 223.4±3.1 and 215.5±2.9 Ma,respectively,indicating that the maximum depositional age of the bottom and top of the Kelamayi growth strata is 226-220 and 218-212 Ma.The geochronological distribution of detrital samples from the Early-Middle Triassic and Late Triassic revealed abrupt changes,suggesting a new source supply resulting from tectonic activation in the Tianshan range.The coupling relationship between the syn-tectonic sedimentation of the Kelamayi Formation and the South Tianshan fold-thrust system provides robust evidence that the Triassic intracontinental deformation of the South Tianshan range began at approximately 226-220 Ma(during the Late Triassic)and ended at approximately 218-212 Ma.These findings provide crucial constraints for understanding the intraplate deformation in the Tianshan range during the Triassic.展开更多
Determining the adsorption of shale gas on complex surfaces remains a challenge in molecular simulation studies.Difficulties essentially stem from the need to create a realistic shale structure model in terms of miner...Determining the adsorption of shale gas on complex surfaces remains a challenge in molecular simulation studies.Difficulties essentially stem from the need to create a realistic shale structure model in terms of mineral heterogeneityand multiplicity.Moreover,precise characterization of the competitive adsorption of hydrogen andmethane in shale generally requires the experimental determination of the related adsorptive capacity.In thisstudy,the adsorption of adsorbates,methane(CH_(4)),and hydrogen(H_(2))on heterogeneous shale surface modelsof Kaolinite,Orthoclase,Muscovite,Mica,C_(60),and Butane has been simulated in the frame of a moleculardynamic’s numerical technique.The results show that these behaviors are influenced by pressure and potentialenergy.On increasing the pressure from 500 to 2000 psi,the sorption effect for CH_(4)significantly increasesbut shows a decline at a certain stage(if compared to H_(2)).The research findings also indicate that raw shalehas a higher capacity to adsorb CH_(4)compared to hydrogen.However,in shale,this difference is negligible.展开更多
Kerogen types exert a decisive effect on the onset and capacity of hydrocarbon generation of source rocks.Lacustrine source rocks in the Liaohe Western Depression are characterized by thick deposition,high total organ...Kerogen types exert a decisive effect on the onset and capacity of hydrocarbon generation of source rocks.Lacustrine source rocks in the Liaohe Western Depression are characterized by thick deposition,high total organic carbon(TOC)content,various kerogen types,and a wide range of thermal maturity.Consequently,their hydrocarbon generation potential and resource estimation can be misinterpreted.In this study,geochemical tests,numerical analysis,hydrocarbon generation kinetics,and basin modeling were integrated to investigate the differential effects of kerogen types on the hydrocarbon generation potential of lacustrine source rocks.Optimized hydrocarbon generation and expulsion(HGE)models of different kerogen types were established quantitatively upon abundant Rock-Eval/TOC/vitrinite reflectance(R_(o))datasets.Three sets of good-excellent source rocks deposited in the fourth(Es4),third(Es3),and first(Es1)members of Paleogene Shahejie Formation,are predominantly types I-II_(1),II_(1)-II_(2),and II-III,respectively.The activation energy of types I-II_(2)kerogen is concentrated(180-230 kcal/mol),whereas that of type III kerogen is widely distributed(150-280 kcal/mol).The original hydrocarbon generation potentials of types I,II_(1),II_(2),and III kerogens are 790,510,270,and 85 mg/g TOC,respectively.The Ro values of the hydrocarbon generation threshold for type I-III source rocks gradually increase from 0.42%to 0.74%,and Ro values of the hydrocarbon expulsion threshold increase from 0.49%to 0.87%.Types I and II_(1)source rocks are characterized by earlier hydrocarbon generation,more rapid hydrocarbon expulsion,and narrower hydrocarbon generation windows than types II_(2)and III source rocks.The kerogen types also affect the HGE history and resource potential.Three types(conventional,tight,and shale oil/gas)and three levels(realistic,expected,and prospective)of hydrocarbon resources of different members in the Liaohe Western Depression are evaluated.Findings suggest that the Es3 member has considerable conventional and unconventional hydrocarbon resources.This study can quantitatively characterize the hydrocarbon generation potential of source rocks with different kerogen types,and facilitate a quick and accurate assessment of hydrocarbon resources,providing strategies for future oil and gas exploration.展开更多
BACKGROUND Cancer patients often suffer from severe stress reactions psychologically,such as anxiety and depression.Prostate cancer(PC)is one of the common cancer types,with most patients diagnosed at advanced stages ...BACKGROUND Cancer patients often suffer from severe stress reactions psychologically,such as anxiety and depression.Prostate cancer(PC)is one of the common cancer types,with most patients diagnosed at advanced stages that cannot be treated by radical surgery and which are accompanied by complications such as bodily pain and bone metastasis.Therefore,attention should be given to the mental health status of PC patients as well as physical adverse events in the course of clinical treatment.AIM To analyze the risk factors leading to anxiety and depression in PC patients after castration and build a risk prediction model.METHODS A retrospective analysis was performed on the data of 120 PC cases treated in Xi'an People's Hospital between January 2019 and January 2022.The patient cohort was divided into a training group(n=84)and a validation group(n=36)at a ratio of 7:3.The patients’anxiety symptoms and depression levels were assessed 2 wk after surgery with the Self-Rating Anxiety Scale(SAS)and the Selfrating Depression Scale(SDS),respectively.Logistic regression was used to analyze the risk factors affecting negative mood,and a risk prediction model was constructed.RESULTS In the training group,35 patients and 37 patients had an SAS score and an SDS score greater than or equal to 50,respectively.Based on the scores,we further subclassified patients into two groups:a bad mood group(n=35)and an emotional stability group(n=49).Multivariate logistic regression analysis showed that marital status,castration scheme,and postoperative Visual Analogue Scale(VAS)score were independent risk factors affecting a patient's bad mood(P<0.05).In the training and validation groups,patients with adverse emotions exhibited significantly higher risk scores than emotionally stable patients(P<0.0001).The area under the curve(AUC)of the risk prediction model for predicting bad mood in the training group was 0.743,the specificity was 70.96%,and the sensitivity was 66.03%,while in the validation group,the AUC,specificity,and sensitivity were 0.755,66.67%,and 76.19%,respectively.The Hosmer-Lemeshow test showed aχ^(2) of 4.2856,a P value of 0.830,and a C-index of 0.773(0.692-0.854).The calibration curve revealed that the predicted curve was basically consistent with the actual curve,and the calibration curve showed that the prediction model had good discrimination and accuracy.Decision curve analysis showed that the model had a high net profit.CONCLUSION In PC patients,marital status,castration scheme,and postoperative pain(VAS)score are important factors affecting postoperative anxiety and depression.The logistic regression model can be used to successfully predict the risk of adverse psychological emotions.展开更多
Based on the organic geochemical data and the molecular and stable carbon isotopic compositions of natural gas of the Lower Permian Fengcheng Formation in the western Central Depression of Junggar Basin,combined with ...Based on the organic geochemical data and the molecular and stable carbon isotopic compositions of natural gas of the Lower Permian Fengcheng Formation in the western Central Depression of Junggar Basin,combined with sedimentary environment analysis and hydrocarbon-generating simulation,the gas-generating potential of the Fengcheng source rock is evaluated,the distribution of large-scale effective source kitchen is described,the genetic types of natural gas are clarified,and four types of favorable exploration targets are selected.The results show that:(1)The Fengcheng Formation is a set of oil-prone source rocks,and the retained liquid hydrocarbon is conducive to late cracking into gas,with characteristics of high gas-generating potential and late accumulation;(2)The maximum thickness of Fengcheng source rock reaches 900 m.The source rock has entered the main gas-generating stage in Penyijingxi and Shawan sags,and the area with gas-generating intensity greater than 20×10^(8) m^(3)/km^(2) is approximately 6500 km^(2).(3)Around the western Central Depression,highly mature oil-type gas with light carbon isotope composition was identified to be derived from the Fengcheng source rocks mainly,while the rest was coal-derived gas from the Carboniferous source rock;(4)Four types of favorable exploration targets with exploration potential were developed in the western Central Depression which are structural traps neighboring to the source,stratigraphic traps neighboring to the source,shale-gas type within the source,and structural traps within the source.Great attention should be paid to these targets.展开更多
Poria cocos(PC)is a famous traditional Chinese medicine(TCM)and a widely used healthcare ingredient,which has antiobesity,enhancing immunity and improving sleep effects.Traditionally,only water-soluble poria polysacch...Poria cocos(PC)is a famous traditional Chinese medicine(TCM)and a widely used healthcare ingredient,which has antiobesity,enhancing immunity and improving sleep effects.Traditionally,only water-soluble poria polysaccharide(WSP)is extracted and applied for clinical application,while insoluble polysaccharide(alkali-soluble poria polysaccharide,ASP)is discarded as herb residue.However,the whole PC has also been historically utilized as functional herbal food.Considering the beneficial role of dietary fiber and the traditional use of PC,ASP may also contribute substantially to the therapy function of PC.Compared to WSP,little attention has been paid to ASP and ASP modified product carboxymethyl poria polysaccharide(CMP)which has been used as an antitumor adjuvant drug.In this study,the oil,cholesterol,metal ions and polyphenols adsorption ability,in vitro simulated digestive and the gut microbiota fermentation characteristics of WSP,ASP and CMP were studied to evaluate the functional values of three P.cocos polysaccharides(PCPs).The results showed that all three PCPs had good adsorption capacity on cholesterol,polyphenols and metal ions(Cd^(2+)/Zn^(2+)/Mg^(2+)),among which ASP showed the highest capacity than WSP and CMP.The adsorption capacity of all three PCPs on heavy metal ions(Cd^(2+)/Zn^(2+))was stronger than that of non-heavy metal ions(Mg^(2+));The in vitro digestibility of all three PCPs was very low,but WSP was slightly higher than ASP and CMP;Moreover,the indigestible residue of all three PCPs could improve the richness and diversity of gut microbiota,among which ASP had the greatest influence.In general,ASP and CMP could significantly promote the proliferation of some probiotics and inhibit the growth of some harmful bacteria.The gut microbiota diversity of CMP was reduced,but the richness of probiotics,especially Parabacteroides distasonis was significantly enhanced compared with the ASP group,and the growth of harmful bacteria Klebsiella pneumoniae was inhibited after CMP treatment.The short-chain fatty acids(SCFAs)analysis results showed that all three PCPs could significantly promote the production of acetic acid,propionic acid and the total acid content compared with blank control group,and SCFAs producing activity was positively correlated with the proliferative capacity of probiotics.Taken together,the good adsorption characteristics and gut microbiota regulatory activity of ASP may lay foundation for its lipid-lowering and immune-improving function.Additionally,the probiotic effect of CMP and ASP indicated that except for only use the water extract of PC in clinic,CMP and ASP also can be used in healthcare to take full advantage of this valuable medicine.展开更多
BACKGROUND Early-onset preeclampsia significantly increases maternal and fetal morbidity and mortality.Many pregnant women with early onset preeclampsia choose cesarean section as their delivery method.Although extens...BACKGROUND Early-onset preeclampsia significantly increases maternal and fetal morbidity and mortality.Many pregnant women with early onset preeclampsia choose cesarean section as their delivery method.Although extensive research has explored the association between postpartum depression(PPD)and cesarean section,few studies have investigated the risk factors after cesarean section in women with early-onset preeclampsia.AIM To examine these risk factors through a retrospective,observational analysis of 287 women who underwent a cesarean section for early preeclampsia between June 2014 and March 2024.METHODS Participants were assessed in person during the 32nd week of pregnancy,2 days post-cesarean,and 6 weeks postpartum.According to the Edinburgh Postnatal Depression Scale(EPDS),participants who underwent cesarean section were divided into PPD(n=60)and non-PPD groups(n=227).Furthermore,PPD was diagnosed at 6 weeks postpartum according to depressive symptoms(EPDS score≥11).The demographic and clinical features of PPD were screened.Multivariate logistic regression analysis was used to identify PPD risk factors.RESULTS The prevalence of PPD was 20.9%(60/287)among the 287 women who underwent cesarean section for early-onset preeclampsia.Multivariate logistic regression analyses revealed that advanced age(age>40 years)[odds ratio(OR)=1.93,95%CI:1.31-2.82],previous preeclampsia(OR=7.15,95%CI:5.81-8.85),pre-pregnancy obesity(OR=2.42,95%CI:1.62-3.63),gestational diabetes mellitus(OR=3.52,95%CI:2.51-4.92),preexisting hypertension(OR=1.35,95%CI:1.03-1.89),PPD symptoms(EPDS≥11)at 2 days postpartum(OR=6.15,95%CI:1.32-28.35),high prenatal self-rating anxiety scale score(OR=1.13,95%CI:1.06-1.18),and pain at 6 weeks postpartum(OR=2.16,95%CI:1.28-3.66)were independently associated with PPD.CONCLUSION Risk factors for PPD after cesarean section in women with early-onset preeclampsia include advanced age(age>40 years),pre-pregnancy obesity,previous preeclampsia,gestational diabetes mellitus,preexisting hypertension,PPD symptoms(EPDS≥11)at 2 days postpartum,prenatal anxiety,and pain at 6 weeks postpartum.The early identi-fication of these factors and interventions can mitigate the risk of PPD.展开更多
The accessibility of tetracycline resistance gene (tetG) into the pores of activated carbon (AC), as well as the impact of the pore size distribution (PSD) of AC on the uptake capacity of tetG, were investigated using...The accessibility of tetracycline resistance gene (tetG) into the pores of activated carbon (AC), as well as the impact of the pore size distribution (PSD) of AC on the uptake capacity of tetG, were investigated using eight types of AC (four coal-based and four wood-based). AC showed the capability to admit tetG and the average reduction of tetG for coal-based and wood-based ACs at the AC dose of 1 g·L<sup>-1</sup> was 3.12 log and 3.65 log, respectively. The uptake kinetic analysis showed that the uptake of the gene followed the pseudo-second-order kinetics reaction, and the uptake rate constant for the coal-based and wood-based ACs was in the range of 5.97 × 10<sup>-12</sup> - 4.64 × 10<sup>-9</sup> and 7.02 × 10<sup>-11</sup> - 1.59 × 10<sup>-8</sup> copies·mg<sup>-1</sup>·min<sup>-1</sup>, respectively. The uptake capacity analysis by fitting the obtained experiment data with the Freundlich isotherm model indicated that the uptake constant (K<sub>F</sub>) values were 1.71 × 10<sup>3</sup> - 8.00 × 10<sup>9</sup> (copies·g<sup>-1</sup>)<sup>1-1/n</sup> for coal-based ACs and 7.00 × 10<sup>8</sup> - 3.00 × 10<sup>10</sup> (copies·g<sup>-1</sup>)<sup>1-1/n</sup> for wood-based ones. In addition, the correlation analysis between K<sub>F</sub> values and pore volume as well as pore surface at different pore size regions of ACs showed that relatively higher positive correlation was found for pores of 50 - 100 Å, suggesting ACs with more pores in this size region can uptake more tetG. The findings of this study are valuable as reference for optimizing the adsorption process regarding antibiotic resistance-related concerns in drinking water treatment.展开更多
The adsorption process of droplets on the liquid-liquid interface and phase separation process can regulate the spatial distribution of the fluid system,which are crucial for chemical engineering.However,the cross-lin...The adsorption process of droplets on the liquid-liquid interface and phase separation process can regulate the spatial distribution of the fluid system,which are crucial for chemical engineering.However,the cross-linking reaction,which is widely used in the field of polymers,can change the physical properties of the fluids and affect the flow behavior accordingly.A configuration of microchannels is designed to conveniently generate uniform droplets in one phase of the parallel flow.The flow behavior of the adsorption process of sodium alginate droplets on the liquid-liquid interface is investigated,and the subsequent process of phase separation is studied.In the process of droplet adsorption,the crosslinking reaction occurs synchronously,which makes the droplet viscosity and the elasticity modules of the droplet surface increase,thus affecting the dynamics of the adsorption process and the equilibrium shape of the droplet.The variation of the adsorption length with time is divided into three stages,which all conform to power law relationship.The exponents of the second and third stages deviate from the results of the Tanner's law.The flow pattern maps of droplet adsorption and phase separation are drawn,and the operating ranges of complete adsorption and complete separation are provided.This study provides a theoretical basis for further studying the flow behavior of droplets with cross-linking reaction in a microchannel.展开更多
Three kinds of iron nanoparticles(FeNPs)were prepared via green route based on pomegranate(PG),green tea(GT),and mulberry(ML)extracts under ambient conditions.The obtained materials were characterized by scanning elec...Three kinds of iron nanoparticles(FeNPs)were prepared via green route based on pomegranate(PG),green tea(GT),and mulberry(ML)extracts under ambient conditions.The obtained materials were characterized by scanning electron microscopy(SEM),transmission electronic microscopy(TEM),X-ray energy-dispersive spectrometer(EDS),X-ray diffraction(XRD),fourier transform infrared spectroscopy(FTIR),and X-ray photoelectron spectroscopy(XPS)techniques.The experimental results show that FeNPs were in the form of amorphous iron(Ⅱ,Ⅲ)-polyphenol complex with different dispersity and morphologies.GT-Fe has the smallest size range of 25-35 nm,PG-Fe has a moderate size-distribution of 30-40 nm,while ML-Fe formed a tuberous net-type with a sheeting structure.PG-Fe displays the highest removal efficiency of 90.2%in 20 min towards cationic dye of malachite green(16.6%by ML-Fe and 69.3%by GT-Fe),which is attributed to its highest polyphenol content,lowest zeta potential,as well as the most Fe^(2+)on the surface of FeNPs.The removal mechanism was mainly induced by electrostatic adsorption based on pH and zeta potential tests.展开更多
Spatter during laser powder bed fusion(LPBF)can induce surface defects,impacting the fatigue performance of the fabricated components.Here,we reveal and explain the links between vapour depression shape and spatter dy...Spatter during laser powder bed fusion(LPBF)can induce surface defects,impacting the fatigue performance of the fabricated components.Here,we reveal and explain the links between vapour depression shape and spatter dynamics during LPBF of an Al-Fe-Zr aluminium alloy using high-speed synchrotron x-ray imaging.We quantify the number,trajectory angle,velocity,and kinetic energy of the spatter as a function of vapour depression zone/keyhole morphology under industry-relevant processing conditions.The depression zone/keyhole morphology was found to influence the spatter ejection angle in keyhole versus conduction melting modes:(i)the vapour-pressure driven plume in conduction mode with a quasi-semi-circular depression zone leads to backward spatter whereas;and(ii)the keyhole rear wall redirects the gas/vapour flow to cause vertical spatter ejection and rear rim droplet spatter.Increasing the opening of the keyhole or vapour depression zone can reduce entrainment of solid spatter.We discover a spatter-induced cavity mechanism in which small spatter particles are accelerated towards the powder bed after laser-spatter interaction,inducing powder denudation and cavities on the printed surface.By quantifying these laser-spatter interactions,we suggest a printing strategy for minimising defects and improving the surface quality of LPBF parts.展开更多
The nitrite(NO_(2)^(−))to ammonia(NH3)electroreduction reaction(NO_(2)^(−)RR)would be impeded by sluggish proton-coupled electron transfer kinetics and competitive hydrogen evolution reaction(HER).A key to improving t...The nitrite(NO_(2)^(−))to ammonia(NH3)electroreduction reaction(NO_(2)^(−)RR)would be impeded by sluggish proton-coupled electron transfer kinetics and competitive hydrogen evolution reaction(HER).A key to improving the NH_(3) selectivity is to facilitate adsorption and activation of NO_(2)^(−),which is generally undesirable in unitary species.In this work,an efficient NO_(2)^(−)RR catalyst is constructed by cooperating Pd with In2O3,in which NO_(2)^(−)could adsorb on interfacial dual-site through“Pd–N–O–In”linkage,leading to strengthened NO_(2)^(−)adsorption and easier N=O bond cleavage than that on unitary Pd or In2O3.Moreover,the Pd/In_(2)O_(3)composite exhibits moderate H^(*)adsorption,which may facilitate protonation kinetics while inhibiting competitive HER.As a result,it exhibits a fairly high NH_(3)yield rate of 622.76 mmol h^(−1)g^(−1)cat with a Faradaic efficiency(FE)of 95.72%,good selectivity of 91.96%,and cycling stability towards the NO_(2)^(−)RR,surpassing unitary In_(2)O_(3)and Pd/C electrocatalysts.Besides,computed results indicate that NH_(3)production on Pd/In_(2)O_(3)follows the deoxidation to hydrogenation pathway.This work highlights the significance of H^(*)and NO_(2)^(−)adsorption modulation and N=O activation in NO_(2)^(−)RR electrochemistry by creating synergy between a mediocre catalyst with an appropriate cooperator.展开更多
Depression is a common mental health disorder.With current depression detection methods,specialized physicians often engage in conversations and physiological examinations based on standardized scales as auxiliary mea...Depression is a common mental health disorder.With current depression detection methods,specialized physicians often engage in conversations and physiological examinations based on standardized scales as auxiliary measures for depression assessment.Non-biological markers-typically classified as verbal or non-verbal and deemed crucial evaluation criteria for depression-have not been effectively utilized.Specialized physicians usually require extensive training and experience to capture changes in these features.Advancements in deep learning technology have provided technical support for capturing non-biological markers.Several researchers have proposed automatic depression estimation(ADE)systems based on sounds and videos to assist physicians in capturing these features and conducting depression screening.This article summarizes commonly used public datasets and recent research on audio-and video-based ADE based on three perspectives:Datasets,deficiencies in existing research,and future development directions.展开更多
Confronting the severe health threats and environmental impacts of Cr(Ⅵ) in aquatic environments demands innovative and effective remediation approaches. In this study, Graphene oxide(GO)-decorated poly(dimethyl amin...Confronting the severe health threats and environmental impacts of Cr(Ⅵ) in aquatic environments demands innovative and effective remediation approaches. In this study, Graphene oxide(GO)-decorated poly(dimethyl amino ethyl methacrylate)(PDMAEMA) brush nanocomposites(GOP1, GOP2, GOP3, and GOP4) were fabricated using atom transfer radical polymerization(ATRP) by the “graft from” method.The resulting nanocomposites were utilized for removing Cr(Ⅵ) with good adsorption performance due to the electrostatic interaction of protonated nitrogen groups in the brush chains with negatively charged particles in the solution. The kinetic model of pseudo-second-order best represented the contaminants' adsorption characteristics. The Weber-Morris model further indicated that surface adsorption and intraparticle diffusion mechanisms primarily controlled the adsorption procedure. Additionally, the Langmuir and Temkin isotherm models were found to most accurately represent the adsorption characteristics of the pollutants on the nanocomposites, and GOP4 can achieve the maximum adsorption capacity of 164.4 mg·g^(-1). The adsorbents' capacity maintains above 85% after five cycles of adsorption-desorption. The nanocomposites in this study demonstrate promising potential for eliminating Cr(Ⅵ) from aqueous solutions.展开更多
基金supported by the renewable energy and hydrogen projects in National Key Research and Development Plan of China(2019YFB1505000).
文摘Flue gas and coal bed methane are two important sources of greenhouse gases.Pressure swing adsorption process has a wide range of application in the field of gas separation,and the selection of adsorbent is crucial.In this regard,in order to assess the better adsorbent for separating CO_(2) from flue gas and CH_(4) from coal bed methane,adsorption isotherms of CO_(2),CH_(4) and N_(2) on activated carbon and carbon molecular sieve are measured at 303.15,318.15 and 333.15 K,and up to 250 kPa.The experimental data fit better with Langmuir 2 compared to Langmuir 3 and Langmuir-Freundlich models,and Clausius-Clapeyron equation was used to calculate the isosteric heat.Both the order of the adsorbed amount and the adsorption heat on the two adsorbents are CO_(2)>CH_(4)>N_(2).The adsorption kinetics are calculated by the pseudo-first kinetic model,and the order of adsorption rates on activated carbon is N_(2)-CH_(4)>CO_(2),while on carbon molecular sieve,it is CO_(2)-N_(2)>CH_(4).It is shown that relative molecular mass and adsorption heat are the primary effect on kinetics for activated carbon,while kinetic diameter is the main resistance factor for carbon molecular sieve.Moreover,the adsorption selectivity of CH_(4)/N_(2) and CO_(2)/N_(2) were estimated with the ideal adsorption solution theory,and carbon molecular sieve performed best at 318.15 K for both CO_(2) and CH_(4) separation.The study suggested that activated carbon is a better choice for separating flue gas and carbon molecular sieve can be a strong candidate for separating coal bed methane.
基金jointly supported by the Science and Technology Department of Shanxi Province,China (20201101003)the National Natural Science Foundation of China (U1810201)the China Scholarship Council (202206400012)。
文摘Methane adsorption is a critical assessment of the gas storage capacity(GSC)of shales with geological conditions.Although the related research of marine shales has been well-illustrated,the methane adsorption of marine-continental transitional(MCT)shales is still ambiguous.In this study,a method of combining experimental data with analytical models was used to investigate the methane adsorption characteristics and GSC of MCT shales collected from the Qinshui Basin,China.The Ono-Kondo model was used to fit the adsorption data to obtain the adsorption parameters.Subsequently,the geological model of GSC based on pore evolution was constructed using a representative shale sample with a total organic carbon(TOC)content of 1.71%,and the effects of reservoir pressure coefficient and water saturation on GSC were explored.In experimental results,compared to the composition of the MCT shale,the pore structure dominates the methane adsorption,and meanwhile,the maturity mainly governs the pore structure.Besides,maturity in the middle-eastern region of the Qinshui Basin shows a strong positive correlation with burial depth.The two parameters,micropore pore volume and non-micropore surface area,induce a good fit for the adsorption capacity data of the shale.In simulation results,the depth,pressure coefficient,and water saturation of the shale all affect the GSC.It demonstrates a promising shale gas potential of the MCT shale in a deeper block,especially with low water saturation.Specifically,the economic feasibility of shale gas could be a major consideration for the shale with a depth of<800 m and/or water saturation>60%in the Yushe-Wuxiang area.This study provides a valuable reference for the reservoir evaluation and favorable block search of MCT shale gas.
文摘BACKGROUND Aortic coarctation is a potentially fatal condition that is primarily treated surgically.Despite successful procedures,patients frequently experience postoperative anxiety and depression,which can hinder recovery and worsen outcomes.Pharmacological interventions,such as 5-hydroxytryptamine(5-HT)and norepinephrine reuptake inhibitors,are commonly prescribed;however,their efficacy alone or in combination with non-invasive brain stimulation techniques,such as repetitive transcranial magnetic stimulation(TMS),remains unclear.AIM To assess the effect of medications and TMS on post-aortic surgery anxiety and depression.METHODS We analyzed the outcomes of 151 patients with anxiety and depression who were hospitalized for aortic dissection between January 2020 and September 2022.Using the random number table method,75 and 76 patients were allocated to the normal control and study groups,respectively.All the patients were treated using routine procedures.The control group was administered anti-anxiety and antidepression drugs,whereas the study group was treated with TMS in addition to these medications.The patients in both groups showed improvement after two courses of treatment.The Hamilton Anxiety Scale(HAMA)and the Hamilton Depression Scale(HAMD)were used to assess anxiety and depression,respectively.The serum levels of brain-derived neurotrophic factor(BDNF)and 5-HT were determined using enzyme-linked immunosorbent assay.The Pittsburgh Sleep Quality Index(PSQI)was used to estimate sleep quality,and the Repeatable Battery for the Assessment of Neuropsychological Status(RBANS)was used to assess cognitive function.RESULTS The HAMD and HAMA scores reduced in 2 groups,with the study group achieving a lower level than control(P<0.05).In the control group,43 patients recovered,17 showed improvement,and 15 were deemed invalid.In the study group,52 recovered,20 improved,and four were invalid.The efficacy rate in study group was 94.74%compared to 80.00%in control(P<0.05).The BDNF and 5-HT levels increased in both groups,with higher levels observed in the experimental group(P<0.05).Moreover,the PSQI scores decreased in 2 groups,but were lower in the intervention group than control(P<0.05).The scores of the RBANS items increased,with the study group scoring higher than control(P<0.05).CONCLUSION Combining anti-anxiety and anti-depressive drugs with repetitive TMS after aortic surgery may enhance mood and treatment outcomes,offering a promising clinical approach.
文摘The goal of this work is to improve the simultaneous removal of Pb2+, Cu2+, Zn2+, and Cd2+ ions from synthetic wastewater in a fixed bed column by incorporating sodium dodecyl sulfate (SDS) onto the surface of activated carbon made from coconut shells. The activated carbons were characterized using Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy-energy dispersive x-ray (SEM-EDX). The adsorption column dynamics were studied by varying the flow rates (5, 10 and 15 mL/min), bed heights (10, 15 and 20 cm), and initial concentrations (50, 150, and 250 mg/L). The activated carbon has a pore volume of 0.715 cm3/g and a BET-specific surface area of 1410 m2/g. Sodium dodecyl sulfate (SDS) surfactant incorporation onto the surface of the activated carbon enhances its capacity for simultaneous adsorption of Pb2+, Cu2+, Zn2+, and Cd2+ from the aqueous medium. The affinity of the heavy metals to both unmodified (AC) and modified (AC-SDS) activated carbons followed the order of Pb2+ > Cu2+ > Zn2+ > Cd2+. The dynamic adsorption of the column depends on the flow rate, bed height, initial metal concentration, and SDS surface modification. With a 5 mL/min flow rate, a 20 cm bed height, and a 50 mg/L initial metal concentration, a maximum break-through time of 150 minutes for the unmodified activated carbon (AC) and 180 minutes for the SDS-modified activated carbon (AC-SDS) was reached.
基金funded by the Taylor Family Institute for Innovative Psychiatric Researchthe Bantly FoundationMH122379 from the National Institute of Mental Health (to YI)。
文摘The etiological factors contributing to depression and other neuropsychiatric disorders are largely undefined. Endoplasmic reticulum stress pathways and autophagy are well-defined mechanisms that play critical functions in recognizing and resolving cellular stress and are possible targets for the pathophysiology and treatment of psychiatric and neurologic illnesses. An increasing number of studies indicate the involvement of endoplasmic reticulum stress and autophagy in the control of neuroinflammation, a contributing factor to multiple neuropsychiatric illnesses. Initial inflammatory triggers induce endoplasmic reticulum stress, leading to neuroinflammatory responses. Subsequently, induction of autophagy by neurosteroids and other signaling pathways that converge on autophagy induction are thought to participate in resolving neuroinflammation. The aim of this review is to summarize our current understanding of the molecular mechanisms governing the induction of endoplasmic reticulum stress, autophagy, and neuroinflammation in the central nervous system. Studies focused on innate immune factors, including neurosteroids with anti-inflammatory roles will be reviewed. In the context of depression, animal models that led to our current understanding of molecular mechanisms underlying depression will be highlighted, including the roles of sigma 1 receptors and pharmacological agents that dampen endoplasmic reticulum stress and associated neuroinflammation.
基金supported by the National Key Research and Development Project(Grant No.2018YFC0603700)research grants from the China Geological Survey(Grant Nos.DD20230408,DD20190011,DD20191011 and DD20221824)+1 种基金the Fundamental Research Funds from the Chinese Academy of Geological Sciences(Grant No.JKY202011)the Key Laboratory of Airborne Geophysics and Remote Sensing Geology Ministry of Natural Resources(Grant No.2023YFL23)。
文摘The Tianshan range,a Paleozoic orogenic belt in Central Asia,has undergone multiple phases of tectonic activities characterized by the N-S compression after the early Mesozoic,including the far-field effects of the Cenozoic Indian-Asian collision.However,there are limited reports on the tectonic deformation and initiation of Triassic intracontinental deformation in the Tianshan range.Understanding this structural context is crucial for interpreting the early intracontinental deformation history of the Eurasian continent during the early Mesozoic.Growth strata and syn-tectonic sediments provide a rich source of information on tectonic activities and have been extensively used in the studies of orogenic belts.Based on detail fieldwork conducted in this study,the middle-late Triassic Kelamayi Formation of the northern Kuqa Depression in the southern Tianshan fold-thrust belt has been identified as the typical syn-tectonic growth strata.The youngest detrital zircon component in two lithic sandstone samples from the bottom and top of the Kelamayi growth strata yielded U-Pb ages of 223.4±3.1 and 215.5±2.9 Ma,respectively,indicating that the maximum depositional age of the bottom and top of the Kelamayi growth strata is 226-220 and 218-212 Ma.The geochronological distribution of detrital samples from the Early-Middle Triassic and Late Triassic revealed abrupt changes,suggesting a new source supply resulting from tectonic activation in the Tianshan range.The coupling relationship between the syn-tectonic sedimentation of the Kelamayi Formation and the South Tianshan fold-thrust system provides robust evidence that the Triassic intracontinental deformation of the South Tianshan range began at approximately 226-220 Ma(during the Late Triassic)and ended at approximately 218-212 Ma.These findings provide crucial constraints for understanding the intraplate deformation in the Tianshan range during the Triassic.
基金PETRONAS Research fund(PRF)under PETRONAS Teknologi Transfer(PTT)Pre-Commercialization—External:YUTP-PRG Cycle 2022(015PBC-020).
文摘Determining the adsorption of shale gas on complex surfaces remains a challenge in molecular simulation studies.Difficulties essentially stem from the need to create a realistic shale structure model in terms of mineral heterogeneityand multiplicity.Moreover,precise characterization of the competitive adsorption of hydrogen andmethane in shale generally requires the experimental determination of the related adsorptive capacity.In thisstudy,the adsorption of adsorbates,methane(CH_(4)),and hydrogen(H_(2))on heterogeneous shale surface modelsof Kaolinite,Orthoclase,Muscovite,Mica,C_(60),and Butane has been simulated in the frame of a moleculardynamic’s numerical technique.The results show that these behaviors are influenced by pressure and potentialenergy.On increasing the pressure from 500 to 2000 psi,the sorption effect for CH_(4)significantly increasesbut shows a decline at a certain stage(if compared to H_(2)).The research findings also indicate that raw shalehas a higher capacity to adsorb CH_(4)compared to hydrogen.However,in shale,this difference is negligible.
基金This research is supported by the Joint Fund of the National Natural Science Foundation of China(grant number U19B6003-02)the Cooperation Program of PetroChina Liaohe Oilfield Company(grant Number HX20180604)the AAPG Foundation Grants-in-Aid Program(grant number 22269437).This study has benefited considerably from PetroChina Liaohe Oilfield Company for data support.We also thank the editor and the anonymous reviewers for their professional suggestions and comments.
文摘Kerogen types exert a decisive effect on the onset and capacity of hydrocarbon generation of source rocks.Lacustrine source rocks in the Liaohe Western Depression are characterized by thick deposition,high total organic carbon(TOC)content,various kerogen types,and a wide range of thermal maturity.Consequently,their hydrocarbon generation potential and resource estimation can be misinterpreted.In this study,geochemical tests,numerical analysis,hydrocarbon generation kinetics,and basin modeling were integrated to investigate the differential effects of kerogen types on the hydrocarbon generation potential of lacustrine source rocks.Optimized hydrocarbon generation and expulsion(HGE)models of different kerogen types were established quantitatively upon abundant Rock-Eval/TOC/vitrinite reflectance(R_(o))datasets.Three sets of good-excellent source rocks deposited in the fourth(Es4),third(Es3),and first(Es1)members of Paleogene Shahejie Formation,are predominantly types I-II_(1),II_(1)-II_(2),and II-III,respectively.The activation energy of types I-II_(2)kerogen is concentrated(180-230 kcal/mol),whereas that of type III kerogen is widely distributed(150-280 kcal/mol).The original hydrocarbon generation potentials of types I,II_(1),II_(2),and III kerogens are 790,510,270,and 85 mg/g TOC,respectively.The Ro values of the hydrocarbon generation threshold for type I-III source rocks gradually increase from 0.42%to 0.74%,and Ro values of the hydrocarbon expulsion threshold increase from 0.49%to 0.87%.Types I and II_(1)source rocks are characterized by earlier hydrocarbon generation,more rapid hydrocarbon expulsion,and narrower hydrocarbon generation windows than types II_(2)and III source rocks.The kerogen types also affect the HGE history and resource potential.Three types(conventional,tight,and shale oil/gas)and three levels(realistic,expected,and prospective)of hydrocarbon resources of different members in the Liaohe Western Depression are evaluated.Findings suggest that the Es3 member has considerable conventional and unconventional hydrocarbon resources.This study can quantitatively characterize the hydrocarbon generation potential of source rocks with different kerogen types,and facilitate a quick and accurate assessment of hydrocarbon resources,providing strategies for future oil and gas exploration.
文摘BACKGROUND Cancer patients often suffer from severe stress reactions psychologically,such as anxiety and depression.Prostate cancer(PC)is one of the common cancer types,with most patients diagnosed at advanced stages that cannot be treated by radical surgery and which are accompanied by complications such as bodily pain and bone metastasis.Therefore,attention should be given to the mental health status of PC patients as well as physical adverse events in the course of clinical treatment.AIM To analyze the risk factors leading to anxiety and depression in PC patients after castration and build a risk prediction model.METHODS A retrospective analysis was performed on the data of 120 PC cases treated in Xi'an People's Hospital between January 2019 and January 2022.The patient cohort was divided into a training group(n=84)and a validation group(n=36)at a ratio of 7:3.The patients’anxiety symptoms and depression levels were assessed 2 wk after surgery with the Self-Rating Anxiety Scale(SAS)and the Selfrating Depression Scale(SDS),respectively.Logistic regression was used to analyze the risk factors affecting negative mood,and a risk prediction model was constructed.RESULTS In the training group,35 patients and 37 patients had an SAS score and an SDS score greater than or equal to 50,respectively.Based on the scores,we further subclassified patients into two groups:a bad mood group(n=35)and an emotional stability group(n=49).Multivariate logistic regression analysis showed that marital status,castration scheme,and postoperative Visual Analogue Scale(VAS)score were independent risk factors affecting a patient's bad mood(P<0.05).In the training and validation groups,patients with adverse emotions exhibited significantly higher risk scores than emotionally stable patients(P<0.0001).The area under the curve(AUC)of the risk prediction model for predicting bad mood in the training group was 0.743,the specificity was 70.96%,and the sensitivity was 66.03%,while in the validation group,the AUC,specificity,and sensitivity were 0.755,66.67%,and 76.19%,respectively.The Hosmer-Lemeshow test showed aχ^(2) of 4.2856,a P value of 0.830,and a C-index of 0.773(0.692-0.854).The calibration curve revealed that the predicted curve was basically consistent with the actual curve,and the calibration curve showed that the prediction model had good discrimination and accuracy.Decision curve analysis showed that the model had a high net profit.CONCLUSION In PC patients,marital status,castration scheme,and postoperative pain(VAS)score are important factors affecting postoperative anxiety and depression.The logistic regression model can be used to successfully predict the risk of adverse psychological emotions.
基金Supported by the National Natural Science Foundation of China(41802177,42272188)PetroChina Basic Technology Research and Development Project(2021DJ0206,2022DJ0507)Research Fund of PetroChina Basic Scientific Research and Strategic Reserve Technology(2020D-5008-04).
文摘Based on the organic geochemical data and the molecular and stable carbon isotopic compositions of natural gas of the Lower Permian Fengcheng Formation in the western Central Depression of Junggar Basin,combined with sedimentary environment analysis and hydrocarbon-generating simulation,the gas-generating potential of the Fengcheng source rock is evaluated,the distribution of large-scale effective source kitchen is described,the genetic types of natural gas are clarified,and four types of favorable exploration targets are selected.The results show that:(1)The Fengcheng Formation is a set of oil-prone source rocks,and the retained liquid hydrocarbon is conducive to late cracking into gas,with characteristics of high gas-generating potential and late accumulation;(2)The maximum thickness of Fengcheng source rock reaches 900 m.The source rock has entered the main gas-generating stage in Penyijingxi and Shawan sags,and the area with gas-generating intensity greater than 20×10^(8) m^(3)/km^(2) is approximately 6500 km^(2).(3)Around the western Central Depression,highly mature oil-type gas with light carbon isotope composition was identified to be derived from the Fengcheng source rocks mainly,while the rest was coal-derived gas from the Carboniferous source rock;(4)Four types of favorable exploration targets with exploration potential were developed in the western Central Depression which are structural traps neighboring to the source,stratigraphic traps neighboring to the source,shale-gas type within the source,and structural traps within the source.Great attention should be paid to these targets.
基金supported by the Province Natural Science Foundation of Hunan,China (2022JJ5410)Special Project on Modern Agricultural Industrial Technology System Construction of Hunan,China (2022-67)。
文摘Poria cocos(PC)is a famous traditional Chinese medicine(TCM)and a widely used healthcare ingredient,which has antiobesity,enhancing immunity and improving sleep effects.Traditionally,only water-soluble poria polysaccharide(WSP)is extracted and applied for clinical application,while insoluble polysaccharide(alkali-soluble poria polysaccharide,ASP)is discarded as herb residue.However,the whole PC has also been historically utilized as functional herbal food.Considering the beneficial role of dietary fiber and the traditional use of PC,ASP may also contribute substantially to the therapy function of PC.Compared to WSP,little attention has been paid to ASP and ASP modified product carboxymethyl poria polysaccharide(CMP)which has been used as an antitumor adjuvant drug.In this study,the oil,cholesterol,metal ions and polyphenols adsorption ability,in vitro simulated digestive and the gut microbiota fermentation characteristics of WSP,ASP and CMP were studied to evaluate the functional values of three P.cocos polysaccharides(PCPs).The results showed that all three PCPs had good adsorption capacity on cholesterol,polyphenols and metal ions(Cd^(2+)/Zn^(2+)/Mg^(2+)),among which ASP showed the highest capacity than WSP and CMP.The adsorption capacity of all three PCPs on heavy metal ions(Cd^(2+)/Zn^(2+))was stronger than that of non-heavy metal ions(Mg^(2+));The in vitro digestibility of all three PCPs was very low,but WSP was slightly higher than ASP and CMP;Moreover,the indigestible residue of all three PCPs could improve the richness and diversity of gut microbiota,among which ASP had the greatest influence.In general,ASP and CMP could significantly promote the proliferation of some probiotics and inhibit the growth of some harmful bacteria.The gut microbiota diversity of CMP was reduced,but the richness of probiotics,especially Parabacteroides distasonis was significantly enhanced compared with the ASP group,and the growth of harmful bacteria Klebsiella pneumoniae was inhibited after CMP treatment.The short-chain fatty acids(SCFAs)analysis results showed that all three PCPs could significantly promote the production of acetic acid,propionic acid and the total acid content compared with blank control group,and SCFAs producing activity was positively correlated with the proliferative capacity of probiotics.Taken together,the good adsorption characteristics and gut microbiota regulatory activity of ASP may lay foundation for its lipid-lowering and immune-improving function.Additionally,the probiotic effect of CMP and ASP indicated that except for only use the water extract of PC in clinic,CMP and ASP also can be used in healthcare to take full advantage of this valuable medicine.
基金Supported by The China Social Welfare Foundation Caring Fund,No.HLCXKT-20230105.
文摘BACKGROUND Early-onset preeclampsia significantly increases maternal and fetal morbidity and mortality.Many pregnant women with early onset preeclampsia choose cesarean section as their delivery method.Although extensive research has explored the association between postpartum depression(PPD)and cesarean section,few studies have investigated the risk factors after cesarean section in women with early-onset preeclampsia.AIM To examine these risk factors through a retrospective,observational analysis of 287 women who underwent a cesarean section for early preeclampsia between June 2014 and March 2024.METHODS Participants were assessed in person during the 32nd week of pregnancy,2 days post-cesarean,and 6 weeks postpartum.According to the Edinburgh Postnatal Depression Scale(EPDS),participants who underwent cesarean section were divided into PPD(n=60)and non-PPD groups(n=227).Furthermore,PPD was diagnosed at 6 weeks postpartum according to depressive symptoms(EPDS score≥11).The demographic and clinical features of PPD were screened.Multivariate logistic regression analysis was used to identify PPD risk factors.RESULTS The prevalence of PPD was 20.9%(60/287)among the 287 women who underwent cesarean section for early-onset preeclampsia.Multivariate logistic regression analyses revealed that advanced age(age>40 years)[odds ratio(OR)=1.93,95%CI:1.31-2.82],previous preeclampsia(OR=7.15,95%CI:5.81-8.85),pre-pregnancy obesity(OR=2.42,95%CI:1.62-3.63),gestational diabetes mellitus(OR=3.52,95%CI:2.51-4.92),preexisting hypertension(OR=1.35,95%CI:1.03-1.89),PPD symptoms(EPDS≥11)at 2 days postpartum(OR=6.15,95%CI:1.32-28.35),high prenatal self-rating anxiety scale score(OR=1.13,95%CI:1.06-1.18),and pain at 6 weeks postpartum(OR=2.16,95%CI:1.28-3.66)were independently associated with PPD.CONCLUSION Risk factors for PPD after cesarean section in women with early-onset preeclampsia include advanced age(age>40 years),pre-pregnancy obesity,previous preeclampsia,gestational diabetes mellitus,preexisting hypertension,PPD symptoms(EPDS≥11)at 2 days postpartum,prenatal anxiety,and pain at 6 weeks postpartum.The early identi-fication of these factors and interventions can mitigate the risk of PPD.
文摘The accessibility of tetracycline resistance gene (tetG) into the pores of activated carbon (AC), as well as the impact of the pore size distribution (PSD) of AC on the uptake capacity of tetG, were investigated using eight types of AC (four coal-based and four wood-based). AC showed the capability to admit tetG and the average reduction of tetG for coal-based and wood-based ACs at the AC dose of 1 g·L<sup>-1</sup> was 3.12 log and 3.65 log, respectively. The uptake kinetic analysis showed that the uptake of the gene followed the pseudo-second-order kinetics reaction, and the uptake rate constant for the coal-based and wood-based ACs was in the range of 5.97 × 10<sup>-12</sup> - 4.64 × 10<sup>-9</sup> and 7.02 × 10<sup>-11</sup> - 1.59 × 10<sup>-8</sup> copies·mg<sup>-1</sup>·min<sup>-1</sup>, respectively. The uptake capacity analysis by fitting the obtained experiment data with the Freundlich isotherm model indicated that the uptake constant (K<sub>F</sub>) values were 1.71 × 10<sup>3</sup> - 8.00 × 10<sup>9</sup> (copies·g<sup>-1</sup>)<sup>1-1/n</sup> for coal-based ACs and 7.00 × 10<sup>8</sup> - 3.00 × 10<sup>10</sup> (copies·g<sup>-1</sup>)<sup>1-1/n</sup> for wood-based ones. In addition, the correlation analysis between K<sub>F</sub> values and pore volume as well as pore surface at different pore size regions of ACs showed that relatively higher positive correlation was found for pores of 50 - 100 Å, suggesting ACs with more pores in this size region can uptake more tetG. The findings of this study are valuable as reference for optimizing the adsorption process regarding antibiotic resistance-related concerns in drinking water treatment.
基金supported by the National Natural Science Foundation of China(92034303,21978197)。
文摘The adsorption process of droplets on the liquid-liquid interface and phase separation process can regulate the spatial distribution of the fluid system,which are crucial for chemical engineering.However,the cross-linking reaction,which is widely used in the field of polymers,can change the physical properties of the fluids and affect the flow behavior accordingly.A configuration of microchannels is designed to conveniently generate uniform droplets in one phase of the parallel flow.The flow behavior of the adsorption process of sodium alginate droplets on the liquid-liquid interface is investigated,and the subsequent process of phase separation is studied.In the process of droplet adsorption,the crosslinking reaction occurs synchronously,which makes the droplet viscosity and the elasticity modules of the droplet surface increase,thus affecting the dynamics of the adsorption process and the equilibrium shape of the droplet.The variation of the adsorption length with time is divided into three stages,which all conform to power law relationship.The exponents of the second and third stages deviate from the results of the Tanner's law.The flow pattern maps of droplet adsorption and phase separation are drawn,and the operating ranges of complete adsorption and complete separation are provided.This study provides a theoretical basis for further studying the flow behavior of droplets with cross-linking reaction in a microchannel.
基金Funded by the Hubei Provincial Natural Science Foundation of China(No.2024AFB946)the Excellent Young and Middle-aged Science and Technology Innovation Team Plan of Hubei Colleges(No.T201824)。
文摘Three kinds of iron nanoparticles(FeNPs)were prepared via green route based on pomegranate(PG),green tea(GT),and mulberry(ML)extracts under ambient conditions.The obtained materials were characterized by scanning electron microscopy(SEM),transmission electronic microscopy(TEM),X-ray energy-dispersive spectrometer(EDS),X-ray diffraction(XRD),fourier transform infrared spectroscopy(FTIR),and X-ray photoelectron spectroscopy(XPS)techniques.The experimental results show that FeNPs were in the form of amorphous iron(Ⅱ,Ⅲ)-polyphenol complex with different dispersity and morphologies.GT-Fe has the smallest size range of 25-35 nm,PG-Fe has a moderate size-distribution of 30-40 nm,while ML-Fe formed a tuberous net-type with a sheeting structure.PG-Fe displays the highest removal efficiency of 90.2%in 20 min towards cationic dye of malachite green(16.6%by ML-Fe and 69.3%by GT-Fe),which is attributed to its highest polyphenol content,lowest zeta potential,as well as the most Fe^(2+)on the surface of FeNPs.The removal mechanism was mainly induced by electrostatic adsorption based on pH and zeta potential tests.
基金support from the UKRI-EPSRC,Grants Numbered EP/W006774/1,EP/P006566/1,EP/W003333/1,and EP/V061798/1funded by the support from a Royal Academy of Engineering Chair in Emerging Technologies(CiET1819/10)+1 种基金CLAL is funded in part by EP/W037483/1 and IPG Photonics/Royal Academy of Engineering Senior Research Fellowship in SEARCH(ref:RCSRF2324-18-71)This research used resources of the European Synchrotron Radiation Facility(ESRF)in Beamline ID19(ME-1573).
文摘Spatter during laser powder bed fusion(LPBF)can induce surface defects,impacting the fatigue performance of the fabricated components.Here,we reveal and explain the links between vapour depression shape and spatter dynamics during LPBF of an Al-Fe-Zr aluminium alloy using high-speed synchrotron x-ray imaging.We quantify the number,trajectory angle,velocity,and kinetic energy of the spatter as a function of vapour depression zone/keyhole morphology under industry-relevant processing conditions.The depression zone/keyhole morphology was found to influence the spatter ejection angle in keyhole versus conduction melting modes:(i)the vapour-pressure driven plume in conduction mode with a quasi-semi-circular depression zone leads to backward spatter whereas;and(ii)the keyhole rear wall redirects the gas/vapour flow to cause vertical spatter ejection and rear rim droplet spatter.Increasing the opening of the keyhole or vapour depression zone can reduce entrainment of solid spatter.We discover a spatter-induced cavity mechanism in which small spatter particles are accelerated towards the powder bed after laser-spatter interaction,inducing powder denudation and cavities on the printed surface.By quantifying these laser-spatter interactions,we suggest a printing strategy for minimising defects and improving the surface quality of LPBF parts.
基金supported by the National Key R&D Program of China(Nos.2022YFA1503104 and 2022YFA1503102)the Natural Science Foundation of Shandong Province(No.2022HWYQ-009)+2 种基金the Natural Science Foundation of Jiangsu Province(No.BK20230243)Taishan Scholars Project(No.tspd20230601)Qilu Young Scholars Program of Shandong University.
文摘The nitrite(NO_(2)^(−))to ammonia(NH3)electroreduction reaction(NO_(2)^(−)RR)would be impeded by sluggish proton-coupled electron transfer kinetics and competitive hydrogen evolution reaction(HER).A key to improving the NH_(3) selectivity is to facilitate adsorption and activation of NO_(2)^(−),which is generally undesirable in unitary species.In this work,an efficient NO_(2)^(−)RR catalyst is constructed by cooperating Pd with In2O3,in which NO_(2)^(−)could adsorb on interfacial dual-site through“Pd–N–O–In”linkage,leading to strengthened NO_(2)^(−)adsorption and easier N=O bond cleavage than that on unitary Pd or In2O3.Moreover,the Pd/In_(2)O_(3)composite exhibits moderate H^(*)adsorption,which may facilitate protonation kinetics while inhibiting competitive HER.As a result,it exhibits a fairly high NH_(3)yield rate of 622.76 mmol h^(−1)g^(−1)cat with a Faradaic efficiency(FE)of 95.72%,good selectivity of 91.96%,and cycling stability towards the NO_(2)^(−)RR,surpassing unitary In_(2)O_(3)and Pd/C electrocatalysts.Besides,computed results indicate that NH_(3)production on Pd/In_(2)O_(3)follows the deoxidation to hydrogenation pathway.This work highlights the significance of H^(*)and NO_(2)^(−)adsorption modulation and N=O activation in NO_(2)^(−)RR electrochemistry by creating synergy between a mediocre catalyst with an appropriate cooperator.
基金Supported by Shandong Province Key R and D Program,No.2021SFGC0504Shandong Provincial Natural Science Foundation,No.ZR2021MF079Science and Technology Development Plan of Jinan(Clinical Medicine Science and Technology Innovation Plan),No.202225054.
文摘Depression is a common mental health disorder.With current depression detection methods,specialized physicians often engage in conversations and physiological examinations based on standardized scales as auxiliary measures for depression assessment.Non-biological markers-typically classified as verbal or non-verbal and deemed crucial evaluation criteria for depression-have not been effectively utilized.Specialized physicians usually require extensive training and experience to capture changes in these features.Advancements in deep learning technology have provided technical support for capturing non-biological markers.Several researchers have proposed automatic depression estimation(ADE)systems based on sounds and videos to assist physicians in capturing these features and conducting depression screening.This article summarizes commonly used public datasets and recent research on audio-and video-based ADE based on three perspectives:Datasets,deficiencies in existing research,and future development directions.
基金the Qatar National Research Fund for funding this work through NPRP(10-0127-170270,acknowledged under the grant code KK-2018-008).
文摘Confronting the severe health threats and environmental impacts of Cr(Ⅵ) in aquatic environments demands innovative and effective remediation approaches. In this study, Graphene oxide(GO)-decorated poly(dimethyl amino ethyl methacrylate)(PDMAEMA) brush nanocomposites(GOP1, GOP2, GOP3, and GOP4) were fabricated using atom transfer radical polymerization(ATRP) by the “graft from” method.The resulting nanocomposites were utilized for removing Cr(Ⅵ) with good adsorption performance due to the electrostatic interaction of protonated nitrogen groups in the brush chains with negatively charged particles in the solution. The kinetic model of pseudo-second-order best represented the contaminants' adsorption characteristics. The Weber-Morris model further indicated that surface adsorption and intraparticle diffusion mechanisms primarily controlled the adsorption procedure. Additionally, the Langmuir and Temkin isotherm models were found to most accurately represent the adsorption characteristics of the pollutants on the nanocomposites, and GOP4 can achieve the maximum adsorption capacity of 164.4 mg·g^(-1). The adsorbents' capacity maintains above 85% after five cycles of adsorption-desorption. The nanocomposites in this study demonstrate promising potential for eliminating Cr(Ⅵ) from aqueous solutions.