This study aimed to present a novel clay/biochar composite adsorption particle, which made from abandoned reed straw and clay to remove ammonia nitrogen(NH4^+-N) from micro-contaminated water. The removal performance ...This study aimed to present a novel clay/biochar composite adsorption particle, which made from abandoned reed straw and clay to remove ammonia nitrogen(NH4^+-N) from micro-contaminated water. The removal performance of NH4^+-N by composite adsorption particle was monitored under different raw material proportions and initial NH4^+-N concentration. Besides, adsorption kinetics and adsorption isotherms were investigated to reveal the adsorption mechanisms. The results showed that NH4^+-N was effectively removed under optimal proportion of biochar, foaming agent and crosslinker with 20%, 3%, and 3%, respectively. The optimal contact time was 150 min and the best removal efficiency was 88.6% at initial NH4^+-N concentration of 20 mg L^-1. The adsorption performance was well described by the second order kinetic model and Freundlich model. The novel clay/biochar composite adsorption particle in this study demonstrated a high potential for NH4^+-N removal from surface water.展开更多
A novel mesoporous silica coated carbon composite(denoted SEG) with hierarchical pore structure has been successfully prepared in an aqueous solution that contains triblock copolymer template, aluminum chloride, silic...A novel mesoporous silica coated carbon composite(denoted SEG) with hierarchical pore structure has been successfully prepared in an aqueous solution that contains triblock copolymer template, aluminum chloride, siliceous source and expanded graphite. Textural property and morphology of the SEG composite were characterized by the combination of X-ray diffraction, N_2 adsorption–desorption, scanning electron microscopy,transmission electron microscopy and Fourier transform infrared measurements. Results show that mesoporous silica is steadily and uniformly grown on the surface of the graphite slices and the thickness of the silica layer can be finely tuned according to the silica/C molar ratio in the initial reaction solution. This newly synthesized SEG composite shows greatly increased adsorption capacity to methylene blue than the pristine expanded graphite in the batch tests. Both Langmuir and Frendlich models were further used to evaluate the adsorption isotherms of methylene blue over expanded graphite and SEG samples with different silica contents. Finally, pseudosecond-order model was used to describe the kinetics of methylene blue over expanded graphite and the silica-carbon composites.展开更多
Fume suppression mechanisms and the effect of expanded graphite on the performance of asphalt were studied by applying infrared spectroscopy(FT-IR), X-ray diffraction(XRD), scanning electron microscopy(SEM) and ...Fume suppression mechanisms and the effect of expanded graphite on the performance of asphalt were studied by applying infrared spectroscopy(FT-IR), X-ray diffraction(XRD), scanning electron microscopy(SEM) and comprehensive thermal analysis(TG, DSC). The experimental results confirm that asphalt which is mixed with expandable graphite will expand in the process of hot mix, and the expanded graphite layer will swell by the light component in the asphalt. The light component in the asphalt and PAHs adsorption on expanded graphite surface or part of the plug in the expanded graphite layer between plates made nucleation crystallization growth. And the Van der Waals force and the bonding of the lattice can effectively restrain the asphalt fume release. Meanwhile, the expanding agent with oxidative can spread into the asphalt, leading to asphalt oxygenated and plastic abate, while the ductility decreases. Expanded graphite, SBS modifier and environment- friendly plasticizers are used to composite modified asphalt. According to asphalt fume release experiment, normal test of asphalt performance, Brookfield viscosity test, RTFOT test and asphalt mixture tests(high temperature stability, low temperature stability, water stability), it has been proven that the modified asphalt’s performance is better than that of matrix asphalt and equivalent to that of SBS modified asphalt. Furthermore, it has good fume suppression effect.展开更多
Adsorption of poly(L-lysine) on surface-attached poly(methacrylic acid) monolayers formed through in situ free radical polymerization was investigated. A strong "template effect" was observed for the adsorption ...Adsorption of poly(L-lysine) on surface-attached poly(methacrylic acid) monolayers formed through in situ free radical polymerization was investigated. A strong "template effect" was observed for the adsorption of poly(L-lysine) on poly(methacrylic acid) layers, which were perpendicularly grown from the surface of substrates. The adsorbed amount of poly(amino acid) increases linearly with the increase in initial layer thickness of poly(methacrylic acid) monolayers. In addition, the adsorbed poly(amino acid) is relatively stable in medium concentration of salt solution but can be completely released from the brush in high salt concentration.展开更多
A magnetic carbon composite, Fe3O4/C composite, was fabricated by one-step hydrothermal synthesis, modified by heat treatment under an inert atmosphere(N2), and then used as an adsorbent for ciprofloxacin(CIP) rem...A magnetic carbon composite, Fe3O4/C composite, was fabricated by one-step hydrothermal synthesis, modified by heat treatment under an inert atmosphere(N2), and then used as an adsorbent for ciprofloxacin(CIP) removal. Conditions for the modification were optimized according to the rate of CIP removal. The adsorbent was characterized by Fourier transform infrared spectroscopy, X-ray diffraction measurements, vibrating-sample magnetometry,scanning electron microscopy, transmission electron microscopy, and N2adsorption/desorption isotherm measurements. The results indicate that the modified adsorbent has substantial magnetism and has a large specific area, which favor CIP adsorption. The effects of solution p H, adsorbent dose, contact time, initial CIP concentration, ion strength, humic acid and solution temperature on CIP removal were also studied. Our results show that all of the above factors influence CIP removal. The Langmuir adsorption isotherm fits the adsorption process well, with the pseudo second-order model describing the adsorption kinetics accurately. The thermodynamic parameters indicate that adsorption is mainly physical adsorption. Recycling experiments revealed that the behavior of adsorbent is maintained after recycling for five times. Overall, the modified magnetic carbon composite is an efficient adsorbent for wastewater treatment.展开更多
Polyacrylamide/silica (PAM/SiO2) composite capsules were synthesized by inverse Pickering emulsion polymerization. Silica nanoparticles modified with methacryloxypropyltrimethoxysilane (MPS) were used as a stabili...Polyacrylamide/silica (PAM/SiO2) composite capsules were synthesized by inverse Pickering emulsion polymerization. Silica nanoparticles modified with methacryloxypropyltrimethoxysilane (MPS) were used as a stabilizer. Transmission electron microscopy (TEM), scanning electron microscopy (SEM). Fourier transform infrared (FTIR) spectroscopy, and thermal gravimetric analysis (TGA) were used to characterize the morphology and composition of the composite capsules. SEM and TEM images showed that capsules consisted of a particle shell and a polymer inner layer. The capsule size depends on the nanoparticle concentration in the continuous phase. The composite rigidity largely depends on the acrylamide concentration. FTIR and TGA results indicated the existence of polyacrylamide and SiO2 in the composite particles. Aqueous Hg(ll) removal testing by the PAM/SiO2 composite capsules indicated promising potential for removing heavy metal ions from wastewater.展开更多
ZnO/graphene oxide(ZnO/GO) composite material,in which ZnO nanoparticles were densely coated on the GO nanosheets,was successfully prepared by an improved two-step method and characterized by IR, XRD,TEM,and UV-vis ...ZnO/graphene oxide(ZnO/GO) composite material,in which ZnO nanoparticles were densely coated on the GO nanosheets,was successfully prepared by an improved two-step method and characterized by IR, XRD,TEM,and UV-vis techniques.The improved photocatalytic property of the ZnO/GO composite material,evaluated by the photocatalytic degradation of methyl orange(MO) under UV irradiation,is ascribed to the intimate contact between ZnO and GO,the enhanced adsorption of MO,the quick electron transfer from excited ZnO particles to GO sheets and the activation of MO molecules viaπ-πinteraction between MO and GO.展开更多
基金supported by the National Major Project of Water Pollution Control and Management Technology in China (No.2013ZX07202-007)the Shenzhen Science and Technology Project (No.GRCK2017042116092660)the National Natural Science Foundation of China (No.51308066)。
文摘This study aimed to present a novel clay/biochar composite adsorption particle, which made from abandoned reed straw and clay to remove ammonia nitrogen(NH4^+-N) from micro-contaminated water. The removal performance of NH4^+-N by composite adsorption particle was monitored under different raw material proportions and initial NH4^+-N concentration. Besides, adsorption kinetics and adsorption isotherms were investigated to reveal the adsorption mechanisms. The results showed that NH4^+-N was effectively removed under optimal proportion of biochar, foaming agent and crosslinker with 20%, 3%, and 3%, respectively. The optimal contact time was 150 min and the best removal efficiency was 88.6% at initial NH4^+-N concentration of 20 mg L^-1. The adsorption performance was well described by the second order kinetic model and Freundlich model. The novel clay/biochar composite adsorption particle in this study demonstrated a high potential for NH4^+-N removal from surface water.
基金Supported by the National Natural Science Foundation of China(2110311921407111 and 21277094)+7 种基金the Natural Science Foundation of Jiangsu Province(11KJB430012BK2012167 and BK20140280)the Scientific Research Foundation of the Chinese Ministry of Education([2013]693)the Excellent Innovation Team in Science and Technology of University in Jiangsuthe Province Collegiate Natural Science Fund of Jiangsu(14KJA43000412KJA430005)the Open Projects of the Jiangsu Key Laboratory for Environment Functional Materials(Nos.SJHG1310 and SJHG1304)the Science,Education and Health Foundation of Soochow(KJXW2013017)
文摘A novel mesoporous silica coated carbon composite(denoted SEG) with hierarchical pore structure has been successfully prepared in an aqueous solution that contains triblock copolymer template, aluminum chloride, siliceous source and expanded graphite. Textural property and morphology of the SEG composite were characterized by the combination of X-ray diffraction, N_2 adsorption–desorption, scanning electron microscopy,transmission electron microscopy and Fourier transform infrared measurements. Results show that mesoporous silica is steadily and uniformly grown on the surface of the graphite slices and the thickness of the silica layer can be finely tuned according to the silica/C molar ratio in the initial reaction solution. This newly synthesized SEG composite shows greatly increased adsorption capacity to methylene blue than the pristine expanded graphite in the batch tests. Both Langmuir and Frendlich models were further used to evaluate the adsorption isotherms of methylene blue over expanded graphite and SEG samples with different silica contents. Finally, pseudosecond-order model was used to describe the kinetics of methylene blue over expanded graphite and the silica-carbon composites.
基金Funded by the National Natural Science Foundation of China(No.51078372)the Doctoral Program of Higher Specialized Research Foundation(No.20105522110002)
文摘Fume suppression mechanisms and the effect of expanded graphite on the performance of asphalt were studied by applying infrared spectroscopy(FT-IR), X-ray diffraction(XRD), scanning electron microscopy(SEM) and comprehensive thermal analysis(TG, DSC). The experimental results confirm that asphalt which is mixed with expandable graphite will expand in the process of hot mix, and the expanded graphite layer will swell by the light component in the asphalt. The light component in the asphalt and PAHs adsorption on expanded graphite surface or part of the plug in the expanded graphite layer between plates made nucleation crystallization growth. And the Van der Waals force and the bonding of the lattice can effectively restrain the asphalt fume release. Meanwhile, the expanding agent with oxidative can spread into the asphalt, leading to asphalt oxygenated and plastic abate, while the ductility decreases. Expanded graphite, SBS modifier and environment- friendly plasticizers are used to composite modified asphalt. According to asphalt fume release experiment, normal test of asphalt performance, Brookfield viscosity test, RTFOT test and asphalt mixture tests(high temperature stability, low temperature stability, water stability), it has been proven that the modified asphalt’s performance is better than that of matrix asphalt and equivalent to that of SBS modified asphalt. Furthermore, it has good fume suppression effect.
基金Funded by the National Natural Science Foundation of China(21576216)
文摘Adsorption of poly(L-lysine) on surface-attached poly(methacrylic acid) monolayers formed through in situ free radical polymerization was investigated. A strong "template effect" was observed for the adsorption of poly(L-lysine) on poly(methacrylic acid) layers, which were perpendicularly grown from the surface of substrates. The adsorbed amount of poly(amino acid) increases linearly with the increase in initial layer thickness of poly(methacrylic acid) monolayers. In addition, the adsorbed poly(amino acid) is relatively stable in medium concentration of salt solution but can be completely released from the brush in high salt concentration.
基金supported by the National Natural Science Foundation of China (No. 21376159)the Natural Science Foundation of Shanxi Province (No. 2013011042-2)
文摘A magnetic carbon composite, Fe3O4/C composite, was fabricated by one-step hydrothermal synthesis, modified by heat treatment under an inert atmosphere(N2), and then used as an adsorbent for ciprofloxacin(CIP) removal. Conditions for the modification were optimized according to the rate of CIP removal. The adsorbent was characterized by Fourier transform infrared spectroscopy, X-ray diffraction measurements, vibrating-sample magnetometry,scanning electron microscopy, transmission electron microscopy, and N2adsorption/desorption isotherm measurements. The results indicate that the modified adsorbent has substantial magnetism and has a large specific area, which favor CIP adsorption. The effects of solution p H, adsorbent dose, contact time, initial CIP concentration, ion strength, humic acid and solution temperature on CIP removal were also studied. Our results show that all of the above factors influence CIP removal. The Langmuir adsorption isotherm fits the adsorption process well, with the pseudo second-order model describing the adsorption kinetics accurately. The thermodynamic parameters indicate that adsorption is mainly physical adsorption. Recycling experiments revealed that the behavior of adsorbent is maintained after recycling for five times. Overall, the modified magnetic carbon composite is an efficient adsorbent for wastewater treatment.
文摘Polyacrylamide/silica (PAM/SiO2) composite capsules were synthesized by inverse Pickering emulsion polymerization. Silica nanoparticles modified with methacryloxypropyltrimethoxysilane (MPS) were used as a stabilizer. Transmission electron microscopy (TEM), scanning electron microscopy (SEM). Fourier transform infrared (FTIR) spectroscopy, and thermal gravimetric analysis (TGA) were used to characterize the morphology and composition of the composite capsules. SEM and TEM images showed that capsules consisted of a particle shell and a polymer inner layer. The capsule size depends on the nanoparticle concentration in the continuous phase. The composite rigidity largely depends on the acrylamide concentration. FTIR and TGA results indicated the existence of polyacrylamide and SiO2 in the composite particles. Aqueous Hg(ll) removal testing by the PAM/SiO2 composite capsules indicated promising potential for removing heavy metal ions from wastewater.
基金supported by the Natural Science Foundation of China(No.21174114)the Ministry of Education Plan for Yangtze River Scholar and Innovation Team Development(No.IRT1177)+2 种基金Scientific and Technical Plan Project of Gansu Province(No. 1204GKCA006)the Natural Science Foundation of Gansu Province (No.1010RJZA024)Scientific and Technical Innovation Project of Northwest Normal University(No.nwnu-kjcxgc-03-63)
文摘ZnO/graphene oxide(ZnO/GO) composite material,in which ZnO nanoparticles were densely coated on the GO nanosheets,was successfully prepared by an improved two-step method and characterized by IR, XRD,TEM,and UV-vis techniques.The improved photocatalytic property of the ZnO/GO composite material,evaluated by the photocatalytic degradation of methyl orange(MO) under UV irradiation,is ascribed to the intimate contact between ZnO and GO,the enhanced adsorption of MO,the quick electron transfer from excited ZnO particles to GO sheets and the activation of MO molecules viaπ-πinteraction between MO and GO.