This article explores the transformative potential of nanotechnology and MMs(memory metals)in enhancing the design and operation of nuclear reactors,encompassing both fission and fusion technologies.Nanotechnology,wit...This article explores the transformative potential of nanotechnology and MMs(memory metals)in enhancing the design and operation of nuclear reactors,encompassing both fission and fusion technologies.Nanotechnology,with its ability to engineer materials at the atomic scale,offers significant improvements in reactor safety,efficiency,and longevity.In fission reactors,nanomaterials enhance fuel rod integrity,optimize thermal management,and improve in-core instrumentation.Fusion reactors benefit from nanostructured materials that bolster containment and heat dissipation,addressing critical challenges in sustaining fusion reactions.The integration of SMAs(shape memory alloys),or MMs,further amplifies these advancements.These materials,characterized by their ability to revert to a pre-defined shape under thermal conditions,provide self-healing capabilities,adaptive structural components,and enhanced magnetic confinement.The synergy between nanotechnology and MMs represents a paradigm shift in nuclear reactor technology,promising a future of cleaner,more efficient,and safer nuclear energy production.This innovative approach positions the nuclear industry to meet the growing global energy demand while addressing environmental and safety concerns.展开更多
Traditional energy management system (EMS) plays an indispensable role in control centers of electric power systems. However, it also has several shortcomings, including lack of real-time closed-loop control, unreliab...Traditional energy management system (EMS) plays an indispensable role in control centers of electric power systems. However, it also has several shortcomings, including lack of real-time closed-loop control, unreliable functional modules, and difficult to exchange data. The electric hybrid control theory (EHCT) has been proposed as an innovative and effective means to overcome these shortcomings. This paper argues that the EHCT provides a theoretical foundation for the advanced energy management system (AEMS) that can achieve multi-objective, near-optimal, and closed-loop control of electric power grids. This paper also discusses the significance for control centers to evolve from the traditional EMS to the AEMS. Furthermore, this paper points out that the traditional EMS can be considered as an integral part of the AEMS and that the AEMS can be built upon the traditional EMS. Thus, the resources that are currently available can be fully utilized to achieve near-optimal and closed-loop control of power system operations.展开更多
文摘This article explores the transformative potential of nanotechnology and MMs(memory metals)in enhancing the design and operation of nuclear reactors,encompassing both fission and fusion technologies.Nanotechnology,with its ability to engineer materials at the atomic scale,offers significant improvements in reactor safety,efficiency,and longevity.In fission reactors,nanomaterials enhance fuel rod integrity,optimize thermal management,and improve in-core instrumentation.Fusion reactors benefit from nanostructured materials that bolster containment and heat dissipation,addressing critical challenges in sustaining fusion reactions.The integration of SMAs(shape memory alloys),or MMs,further amplifies these advancements.These materials,characterized by their ability to revert to a pre-defined shape under thermal conditions,provide self-healing capabilities,adaptive structural components,and enhanced magnetic confinement.The synergy between nanotechnology and MMs represents a paradigm shift in nuclear reactor technology,promising a future of cleaner,more efficient,and safer nuclear energy production.This innovative approach positions the nuclear industry to meet the growing global energy demand while addressing environmental and safety concerns.
基金Supported by the National Natural Science Foundation of China (Grant Nos.50595411,50377018)the National Basic Research Program of China ("973") (Grant No.2004CB217903)the Key Project of State Grid Company
文摘Traditional energy management system (EMS) plays an indispensable role in control centers of electric power systems. However, it also has several shortcomings, including lack of real-time closed-loop control, unreliable functional modules, and difficult to exchange data. The electric hybrid control theory (EHCT) has been proposed as an innovative and effective means to overcome these shortcomings. This paper argues that the EHCT provides a theoretical foundation for the advanced energy management system (AEMS) that can achieve multi-objective, near-optimal, and closed-loop control of electric power grids. This paper also discusses the significance for control centers to evolve from the traditional EMS to the AEMS. Furthermore, this paper points out that the traditional EMS can be considered as an integral part of the AEMS and that the AEMS can be built upon the traditional EMS. Thus, the resources that are currently available can be fully utilized to achieve near-optimal and closed-loop control of power system operations.