期刊文献+
共找到33篇文章
< 1 2 >
每页显示 20 50 100
Regulatory role of peroxynitrite in advanced glycation end products mediated diabetic cardiovascular complications
1
作者 Asis Bala 《World Journal of Diabetes》 SCIE 2024年第3期572-574,共3页
The Advanced Glycation End Products(AGE)binding with its receptor can increase reactive oxygen species(ROS)generation through specific signaling mediators.The effect of superoxide(O2-)and O2-mediated ROS and reactive ... The Advanced Glycation End Products(AGE)binding with its receptor can increase reactive oxygen species(ROS)generation through specific signaling mediators.The effect of superoxide(O2-)and O2-mediated ROS and reactive nitrogen species depends on their concentration and location of formation.Nitric oxide(NO)has anti-inflammatory and anticoagulant properties and a vasodilation effect,but NO can be deactivated by reacting with O_(2)^(-).This reaction between NO and O2-produces the potent oxidant ONOO−.Therefore,ONOO-'s regulatory role in AGEs in diabetic cardiovascular complications must considered as a regulator of cardiovascular complications in diabetes. 展开更多
关键词 DIABETES Cardiovascular complication advanced glycation end products Reactive oxygen species Reactive nitrogen species PEROXYNITRITE
下载PDF
Advanced glycation end products:Key mediator and therapeutic target of cardiovascular complications in diabetes 被引量:1
2
作者 Savita Bansal Archana Burman Asok Kumar Tripathi 《World Journal of Diabetes》 SCIE 2023年第8期1146-1162,共17页
The incidence of type 2 diabetes mellitus is growing in epidemic proportions and has become one of the most critical public health concerns.Cardiovascular complications associated with diabetes are the leading cause o... The incidence of type 2 diabetes mellitus is growing in epidemic proportions and has become one of the most critical public health concerns.Cardiovascular complications associated with diabetes are the leading cause of morbidity and mortality.The cardiovascular diseases that accompany diabetes include angina,myocardial infarction,stroke,peripheral artery disease,and congestive heart failure.Among the various risk factors generated secondary to hyperglycemic situations,advanced glycation end products(AGEs)are one of the important targets for future diagnosis and prevention of diabetes.In the last decade,AGEs have drawn a lot of attention due to their involvement in diabetic pathophysiology.AGEs can be derived exogenously and endogenously through various pathways.These are a nonhomogeneous,chemically diverse group of compounds formed nonenzymatically by condensation between carbonyl groups of reducing sugars and free amino groups of protein,lipids,and nucleic acid.AGEs mediate their pathological effects at the cellular and extracellular levels by multiple pathways.At the cellular level,they activate signaling cascades via the receptor for AGEs and initiate a complex series of intracellular signaling resulting in reactive oxygen species generation,inflammation,cellular proliferation,and fibrosis that may possibly exacerbate the damaging effects on cardiac functions in diabetics.AGEs also cause covalent modifications and cross-linking of serum and extracellular matrix proteins;altering their structure,stability,and functions.Early diagnosis of diabetes may prevent its progression to complications and decrease its associated comorbidities.In the present review,we recapitulate the role of AGEs as a crucial mediator of hyperglycemia-mediated detrimental effects in diabetes-associated complications.Furthermore,this review presents an overview of future perspectives for new therapeutic interventions to ameliorate cardiovascular complications in diabetes. 展开更多
关键词 Type 2 diabetes mellitus Cardiovascular complications HYPERGLYCEMIA advanced glycation end products Reactive oxygen species Oxidative stress endothelial cells Receptor of advanced glycation end products Anti-advanced glycation end products strategies
下载PDF
The effect of protein oxidation on the formation of advanced glycation end products after chicken myofibrillar protein glycation 被引量:1
3
作者 Zongshuai Zhu Anthony Pius Bassey +1 位作者 Ming Huang Iftikhar Ali Khan 《Food Science and Human Wellness》 SCIE CSCD 2023年第5期1571-1579,共9页
Investigation that protein oxidation to the formation of advanced glycation end products(AGEs)after chicken myofibrillar protein glycation is limited.Models of protein oxidation induced by different concentrations of ... Investigation that protein oxidation to the formation of advanced glycation end products(AGEs)after chicken myofibrillar protein glycation is limited.Models of protein oxidation induced by different concentrations of hydroxyl radicals(·OH)were developed after the chicken myofibrillar protein mild glycation(MPG).Results exhibited that levels of AGEs and surface hydrophobicity(H_(0))steadily increased with the a ddition of h ydrogen peroxide(H_(2)O_(2))concentration.However,levels of s ulfhydryl group,free amino group,and particle size gradually decreased with the H_(2)O_(2)concentration.The protein carbonyl value increased in H_(2)O_(2)concentration until 10 mmol/L.Pearson's correlation indicated that MPG structure modification(unfolding and degradation)induced by protein oxidation were significantly positively correlated with AGEs concentration(P<0.05).Finally,a mechanism was proposed to hypothesize t he effect of protein oxidation on the formation of AGEs under MPG conditions. 展开更多
关键词 Protein oxidation Glycated myofibrillar protein Structure changes advanced glycation end products
下载PDF
Catalpol Prevents Glomerular Angiogenesis Induced by Advanced Glycation End Products via Inhibiting Galectin-3
4
作者 Wei-xiang SUN Yu-yan GAO +3 位作者 Ying CAO Jin-fu LU Gao-hong LV Hui-qin XU 《Current Medical Science》 SCIE CAS 2023年第4期668-678,共11页
Objective:The main characteristics of diabetic nephropathy(DN)at the early stage are abnormal angiogenesis of glomerular endothelial cells(GECs)and macrophage infiltration.Galectin-3 plays a pivotal role in the pathog... Objective:The main characteristics of diabetic nephropathy(DN)at the early stage are abnormal angiogenesis of glomerular endothelial cells(GECs)and macrophage infiltration.Galectin-3 plays a pivotal role in the pathogenesis of DN via binding with its ligand,advanced glycation end products(AGEs).Catalpol,an iridoid glucoside extracted from Rehmannia glutinosa,has been found to ameliorate vascular inflammation,reduce endothelial permeability,and protect against endothelial damage in diabetic milieu.However,little is known about whether catalpol could exert an anti-angiogenesis and anti-inflammation effect induced by AGEs.Methods:Mouse GECs(mGECs)and RAW 264.7 macrophages were treated with different concentrations of AGEs(0,50,100,200 and 400μg/mL)for different time(0,6,12,24 and 48 h)to determine the optimal concentration of AGEs and treatment time.Cells were treated with catalpol(10μmol/L),GB1107(1μmol/L,galectin-3 inhibitor),PX-478(50μmol/L,HIF-1αinhibitor),adenovirus-green fluorescent protein(Ad-GFP)[3×10^(7)plaque-forming unit(PFU)/mL]or Ad-galectin-3-GFP(2×10^(8)PFU/mL),which was followed by incubation with 50μg/mL AGEs.The levels of galectin-3,vascular endothelial growth factor A(VEGFA)and pro-angiogenic factors angiopoietin-1(Ang-1),angiopoietin-2(Ang-2),tunica interna endothelial cell kinase-2(Tie-2)were detected by enzyme-linked immunosorbent assay(ELISA).Cell counting kit-8(CCK-8)assay was used to evaluate the proliferation of these cells.The expression levels of galectin-3,vascular endothelial growth factor receptor 1(VEGFR1),VEGFR2,and hypoxia-inducible factor-1α(HIF-1α)in mGECs and those of galectin-3 and HIF-1αin RAW 264.7 macrophages were detected by Western blotting and immunofluorescence(IF)staining.The rat DN model was established.Catalpol(100 mg/kg)or GB1107(10 mg/kg)was administered intragastrically once a day for 12 weeks.Ad-galectin-3-GFP(6×10^(7)PFU/mL,0.5 mL)or Ad-GFP(6×10^(6)PFU/mL,0.5 mL)was injected into the tail vein of rats 48 h before the sacrifice of the animals.The expression of galectin-3,VEGFR1,.VEGFR2,and HIF-1αin renal cortices was analyzed by Western blotting.The expression of galectin-3,F4/80(a macrophage biomarker),and CD34(an endothelium biomarker)in renal cortices was detected by IF staining,and collagen accumulation by Masson staining.Results:The expression levels of galectin-3 and VEGFA were significantly higher in mGECs and RAW 264.7 macrophages treated with 50μg/mL AGEs for 48 h than those in untreated cells.Catalpol and GB1107 could block the AGEs-induced proliferation of mGECs and RAW 264.7 macrophages.Over-expression of galectin-3 was found to reduce the inhibitory effect of catalpol on the proliferation of cells.Catalpol could significantly decrease the levels of Ang-1,Ang-2 and Tie-2 released by AGEs-treated mGECs,which could be reversed by over-expression of galectin-3.Catalpol could significantly inhibit AGEs-induced expression of galectin-3,HIF-1α,VEGFR1,and VEGFR2 in mGECs.The inhibitory effect of catalpol on galectin-3 in AGEs-treated mGECs was impaired by PX-478.Moreover,catalpol attenuated the AGEs-activated HIF-1α/galectin-3 pathway in RAW 264.7 macrophages,which was weakened by PX-478.Additionally,catalpol significantly inhibited the expression of galectin-3,macrophage infiltration,collagen accumulation,and angiogenesis in the kidney of diabetic rats.Over-expression of galectin-3 could antagonize these inhibitory effects of catalpol.Conclusion:Catalpol prevented the angiogenesis of mGECs and macrophage proliferation via inhibiting galectin-3.It could prevent the progression of diabetes-induced renal damage. 展开更多
关键词 CATALPOL glomerular angiogenesis advanced glycation end products GALECTIN-3
下载PDF
Implications of receptor for advanced glycation end products for progression from obesity to diabetes and from diabetes to cancer
5
作者 Andrea Garza-Campos José Roberto Prieto-Correa +1 位作者 José Alfredo Domínguez-Rosales Zamira Helena Hernández-Nazará 《World Journal of Diabetes》 SCIE 2023年第7期977-994,共18页
Obesity and type 2 diabetes mellitus(T2DM)are chronic pathologies with a high incidence worldwide.They share some pathological mechanisms,including hyperinsulinemia,the production and release of hormones,and hyperglyc... Obesity and type 2 diabetes mellitus(T2DM)are chronic pathologies with a high incidence worldwide.They share some pathological mechanisms,including hyperinsulinemia,the production and release of hormones,and hyperglycemia.The above,over time,affects other systems of the human body by causing tissue hypoxia,low-grade inflammation,and oxidative stress,which lay the pathophysiological groundwork for cancer.The leading causes of death globally are T2DM and cancer.Other main alterations of this pathological triad include the accumulation of advanced glycation end products and the release of endogenous alarmins due to cell death(i.e.,damage-associated molecular patterns)such as the intracellular proteins high-mobility group box protein 1 and protein S100 that bind to the receptor for advanced glycation products(RAGE)-a multiligand receptor involved in inflammatory and metabolic and neoplastic processes.This review analyzes the latest advanced reports on the role of RAGE in the development of obesity,T2DM,and cancer,with an aim to understand the intracellular signaling mechanisms linked with cancer initiation.This review also explores inflammation,oxidative stress,hypoxia,cellular senescence,RAGE ligands,tumor microenvironment changes,and the“cancer hallmarks”of the leading tumors associated with T2DM.The assimilation of this information could aid in the development of diagnostic and therapeutic approaches to lower the morbidity and mortality associated with these diseases. 展开更多
关键词 Type 2 diabetes CANCER OBESITY advanced glycation end product receptor Receptor for advanced glycation end products glycation end products advanced
下载PDF
Nε-(carboxymethyl)lysine promotes lipid uptake of macrophage via cluster of differentiation 36 and receptor for advanced glycation end products
6
作者 Zhong-Qun Wang Hai-Peng Yao Zhen Sun 《World Journal of Diabetes》 SCIE 2023年第3期222-233,共12页
BACKGROUND Advanced glycation end products(AGEs)are diabetic metabolic toxic products that cannot be ignored.Nε-(carboxymethyl)lysine(CML),a component of AGEs,could increase macrophage lipid uptake,promote foam cell ... BACKGROUND Advanced glycation end products(AGEs)are diabetic metabolic toxic products that cannot be ignored.Nε-(carboxymethyl)lysine(CML),a component of AGEs,could increase macrophage lipid uptake,promote foam cell formation,and thereby accelerate atherosclerosis.The receptor for AGEs(RAGE)and cluster of differentiation 36(CD36)were the receptors of CML.However,it is still unknown whether RAGE and CD36 play key roles in CML-promoted lipid uptake.AIM Our study aimed to explore the role of RAGE and CD36 in CML-induced macrophage lipid uptake.METHODS In this study,we examined the effect of CML on lipid uptake by Raw264.7 macrophages.After adding 10 mmol/L CML,the lipid accumulation in macrophages was confirmed by oil red O staining.Expression changes of CD36 and RAGE were detected with immunoblotting and quantitative real-time polymerase chain reaction.The interaction between CML with CD36 and RAGE was verified by immunoprecipitation.We synthesized a novel N-succinimidyl-4-18Ffluorobenzoate-CML radioactive probe.Radioactive receptor-ligand binding assays were performed to test the binding affinity between CML with CD36 and RAGE.The effects of blocking CD36 or RAGE on CML-promoting lipid uptake were also detected.RESULTS The study revealed that CML significantly promoted lipid uptake by macrophages.Immunoprecipitation and radioactive receptor-ligand binding assays indicated that CML could specifically bind to both CD36 and RAGE.CML had a higher affinity for CD36 than RAGE.ARG82,ASN71,and THR70 were the potential interacting amino acids that CD36 binds to CML Anti-CD36 and anti-RAGE could block the uptake of CML by macrophages.The lipid uptake promotion effect of CML was significantly attenuated after blocking CD36 or RAGE.CONCLUSION Our results suggest that the binding of CML with CD36 and RAGE promotes macrophage lipid uptake. 展开更多
关键词 Nε-(carboxymethyl)lysine Cluster of differentiation 36 Receptor for advanced glycation end products Lipid uptake MACROPHAGE
下载PDF
HEPATOCYTE GROWTH FACTOR PROTECTS AGAINST APOPTOSIS INDUCED BY ADVANCED GLYCATION END PRODUCTS IN ENDOTHELIAL CELLS 被引量:2
7
作者 Yi-jun Zhou Jia-he Wang Jin Zhang 《Chinese Medical Sciences Journal》 CAS CSCD 2006年第1期6-10,共5页
Objective To investigate the effects of hepatocyte growth factor(HGF)on vascular endothelial cells apoptosis induced by advanced glycation end products(AGEs)and its possible mechanism. Methods Human umbilical vein end... Objective To investigate the effects of hepatocyte growth factor(HGF)on vascular endothelial cells apoptosis induced by advanced glycation end products(AGEs)and its possible mechanism. Methods Human umbilical vein endothelial cells(HUVECs)were cultured in vitro and intervened by different concentrations of AGEs and HGF.The cell inhibitory rates of each group with different culture time(12, 24, 48, and 72 hours)were measured by methyl thiazolyl tetrazolium(MTT)assay. The early stage apoptosis was detected by flow cytometry with Annexin V-FITC/PI double staining, morphology of cell apoptosis was observed by hoechst 33258 fluorescence staining, and the expression of apoptosis-associated genes Bax and Bcl-2 were determined by Western blotting.The activity of caspase-3 was detected by enzyme-linked immunosorbent assay (ELISA).Results Morphological observation indicated that high concentration of AGEs induced characteristic apoptotic changes in HUVECs.Within a certain concentration range, HUVECs apoptosis inducing rates by AGEs were in both dose- and time-dependent manners.HGF significantly inhibited the apoptosis of HUVECs induced by AGEs (P< 0.05).AGEs significantly promoted expression of Bax protein, but not Bcl-2.Whereas HGF significantly promoted the expression of Bcl-2(P<0.01)and decreased the activity of caspase-3(P<0.05)without affecting Bax level.Conclusions AGEs can induce the apoptosis of endothelial cells in vitro.HGF may effectively attenuate AGEs-induced endothelial cells apoptosis through upregulating Bcl-2 gene expression and inhibiting caspase-3 activation. 展开更多
关键词 hepatocyte growth factor advanced glycation end products vascular endothelial cell APOPTOSIS ATHEROSCLEROSIS
下载PDF
Correlation between soluble receptor for advanced glycation end products levels and coronary artery disease in postmenopausal nondiabetic women 被引量:2
8
作者 Soumitra Ghosh Divya Kapoor +4 位作者 Rajesh Vijayvergiya Sonal Sangwan Sujata Wangkheimayum Sakshi Mehta Veena Dhawan 《World Journal of Cardiology》 2021年第5期130-143,共14页
BACKGROUND The established cardiovascular risk factors cannot explain the overall risk of coronary artery disease(CAD),especially in women.Therefore,there is a growing need for the assessment of novel biomarkers to id... BACKGROUND The established cardiovascular risk factors cannot explain the overall risk of coronary artery disease(CAD),especially in women.Therefore,there is a growing need for the assessment of novel biomarkers to identify women at risk.The receptor for advanced glycation end products(RAGE)and its interaction with the advanced glycation end product(AGE)ligand have been associated with atherogenesis.The soluble fraction of RAGE(sRAGE)antagonizes RAGE signaling and exerts an antiatherogenic effect.AIM The study aim was to explore the association between plasma levels of sRAGE and CAD in nondiabetic postmenopausal women.METHODS This case-control study included 110 nondiabetic postmenopausal women who were enrolled in two groups.Group I included 55 angiographically proven CAD subjects with>50%stenosis in at least one of the major coronary arteries and Group II included 55 healthy control women who did not have CAD or had<50%stenosis of the coronary arteries.Stenosis was confirmed by invasive angiography.Plasma sRAGE was determined by an enzyme-linked immunosorbent assay.RESULTS We observed significantly lower plasma sRAGE concentrations in subjects with CAD vs healthy controls(P<0.05).Univariate and multivariate logistic regression analysis also revealed a significant correlation between plasma sRAGE levels and CAD(P=0.01).Multivariate odds ratios for CAD revealed that subjects with sRAGE concentrations below 225 pg/mL(lowest quartile)had a 6-fold increase in CAD prevalence independent of other risk factors.CONCLUSION Our findings indicated that low sRAGE levels were independently associated with CAD in nondiabetic postmenopausal women.Risk assessment of CAD in postmenopausal women can be improved by including sRAGE along with other risk factors. 展开更多
关键词 Coronary artery disease Soluble receptor for advanced glycation end products Postmenopausal status Nondiabetic females CORRELATION Regression
下载PDF
Autophagy plays a protective role in advanced glycation end products-induced apoptosis of chondrocytes via regulation of tumor necrosis factor-α,nuclear factor-κ B and reactive oxygen species 被引量:1
9
作者 Zhi-Jiang Sun Ya-Yi Xia 《Asian Pacific Journal of Tropical Medicine》 SCIE CAS 2018年第1期73-77,共5页
Objective: To study the adverse effects of advanced glycation end products(AGEs) on chondrocytes and the role of autophagy in this process. Methods: Chondrocytes were harvested from the human articular cartilage tissu... Objective: To study the adverse effects of advanced glycation end products(AGEs) on chondrocytes and the role of autophagy in this process. Methods: Chondrocytes were harvested from the human articular cartilage tissues in surgery. AGEs were administered during chondrocytes culture. The rapamycin was used to induce autophagy. The cell viability was determined by 3-[4,5-dimethylthiazol2-yl]-2,5-diphenyl tetrazolium bromide(MTT) assay.The expression of tumor necrosis factor-α(TNF-α) and nuclear factor-κ B(NF-κ B) was detected by quantitative real-time polymerase chain reaction. The reactive oxygen species(ROS) production and apoptosis of the chondrocytes were determined by fluorescent probe and flow cytometer, respectively. Results: The chondrocytes viability was significantly reduced after 12 h incubation with AGEs(P<0.01)). In contrast, rapamycin pretreatment increased the chondrocytes viability through autophagy. AGEs increased TNF-α and NF-κ B mRNA expression of chondrocytes and autophagy receded or proceeded the change. AGEs increased intracellular ROS accumulation and autophagy reversed the change. AGEs accelerated chondrocytes apoptosis and autophagy suspended apoptosis. Conclusions: Accumulation of AGEs may have an adverse role for chondrocytes by increasing TNF-α and NF-κB expression, ROS accumulation and apoptosis; meanwhile, autophagy ameliorates the AGEsinduced adverse effects. 展开更多
关键词 advanced glycation end products AUTOPHAGY Tumor necrosis factor-α Nuclear factor-κ B Reactive oxygen species APOPTOSIS CHONDROCYTES
下载PDF
Profilin-1 is involved in macroangiopathy induced by advanced glycation end products via vascular remodeling and inflammation 被引量:1
10
作者 Zhi-Lin Xiao Li-Ping Ma +3 位作者 Da-Feng Yang Mei Yang Zhen-Yu Li Mei-Fang Chen 《World Journal of Diabetes》 SCIE 2021年第11期1875-1893,共19页
BACKGROUND The accumulation of advanced glycation end products(AGEs)have been implicated in the development and progression of diabetic vasculopathy.However,the role of profilin-1 as a multifunctional actin-binding pr... BACKGROUND The accumulation of advanced glycation end products(AGEs)have been implicated in the development and progression of diabetic vasculopathy.However,the role of profilin-1 as a multifunctional actin-binding protein in AGEs-induced atherosclerosis(AS)is largely unknown.AIM To explore the potential role of profilin-1 in the pathogenesis of AS induced by AGEs,particularly in relation to the Janus kinase 2(JAK2)and signal transducer and activator of transcription 3(STAT3)signaling pathway.METHODS Eighty-nine individuals undergoing coronary angiography were enrolled in the study.Plasma cytokine levels were detected using ELISA kits.Rat aortic vascular smooth muscle cells(RASMCs)were incubated with different compounds for different times.Cell proliferation was determined by performing the MTT assay and EdU staining.An AGEs-induced vascular remodeling model was established in rats and histological and immunohistochemical analyses were performed.The mRNA and protein levels were detected using real-time PCR and Western blot analysis,respectively.In vivo,shRNA transfection was performed to verify the role of profilin-1 in AGEs-induced proatherogenic mediator release and aortic remodeling.Statistical analyses were performed using SPSS 22.0 software.RESULTS Compared with the control group,plasma levels of profilin-1 and receptor for AGEs(RAGE)were significantly increased in patients with coronary artery disease,especially in those complicated with diabetes mellitus(P<0.01).The levels of profilin-1 were positively correlated with the levels of RAGE(P<0.01);additionally,the levels of both molecules were positively associated with the degree of coronary artery stenosis(P<0.01).In vivo,tail vein injections of AGEs induced the release of proatherogenic mediators,such as asymmetric dimethylarginine,intercellular adhesion molecule-1,and the N-terminus of procollagen III peptide,concomitant with apparent aortic morphological changes and significantly upregulated expression of the profilin-1 mRNA and protein in the thoracic aorta(P<0.05 or P<0.01).Downregulation of profilin-1 expression with an shRNA significantly attenuated AGEs-induced proatherogenic mediator release(P<0.05)and aortic remodeling.In vitro,incubation of vascular smooth muscle cells(VSMCs)with AGEs significantly promoted cell proliferation and upregulated the expression of the profilin-1 mRNA and protein(P<0.05).AGEs(200μg/mL,24 h)significantly upregulated the expression of the STAT3 mRNA and protein and JAK2 protein,which was blocked by a JAK2 inhibitor(T3042-1)and/or STAT3 inhibitor(T6308-1)(P<0.05).In addition,pretreatment with T3042-1 or T6308-1 significantly inhibited AGEs-induced RASMC proliferation(P<0.05).CONCLUSION AGEs induce proatherogenic events such as VSMC proliferation,proatherogenic mediator release,and vascular remodeling,changes that can be attenuated by silencing profilin-1 expression.These results suggest a crucial role for profilin-1 in AGEs-induced vasculopathy. 展开更多
关键词 advanced glycation end products Profilin-1 Diabetic macroangiopathy ATHEROSCLEROSIS Vascular remodeling Janus kinase 2/signal transducer and activator of transcription 3 signaling pathway
下载PDF
Effect of thioltransferase on oxidative stress induced by high glucose and advanced glycation end products in human lens epithelial cells
11
作者 Qing Liu Xu Wang Hong Yan 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2021年第7期965-972,共8页
AIM:To study the effect of thioltransferase(TTase)on oxidative stress in human lens epithelial cells(HLECs)induced by high glucose and advanced glycation end products(AGEs).METHODS:HLECs were treated with 35.5 mmol/L ... AIM:To study the effect of thioltransferase(TTase)on oxidative stress in human lens epithelial cells(HLECs)induced by high glucose and advanced glycation end products(AGEs).METHODS:HLECs were treated with 35.5 mmol/L glucose or 1.5 mg/mL AGEs modified bovine serum albumin(AGEs-BSA)as the experimental groups,respectively.Cells were collected at the time point of 1,2,3,and 4 d.The TTase activity were measured accordingly.TTase mRNA levels were detected by quantitative reverse transcription polymerase chain response(qRT-RCR)and its protein level was detected by Western blot.The siRNA was used to knock down the expression of TTase.The activity of catalase(CAT)and superoxide dismutase(SOD),the content of reactive oxygen species(ROS)and the ratio of oxidized glutathione/total glutathione(GSSG/T-GSH)were assessed in different groups,respectively.RESULTS:The level of TTase mRNA gradually increased and reached the top at 2 d,then it decreased to the normal level at 4 d,and the TTase activity increased from 2 to 3 d in both high glucose and AGEs-BSA groups.The TTase expression elevated from 2 d in high glucose group,and it began to rise from 3 d in AGEs-BSA group.The activity of CAT and SOD showed a decrease and the content of ROS and the ratio of GSSG/T-GSH showed an increase in high glucose and AGEs-BSA group.These biochemical alterations were more prominent in the groups with TTase siRNA.CONCLUSION:High glucose and AGEs can increase ROS content in HLECs;therefore,it induces oxidative stress.This may result in the decreased GSH and increased GSSG content,impaired activity of SOD and CAT.The up-regulated TTase likely provides oxidation damage repair induced by high glucose and AGEs in the early stage. 展开更多
关键词 THIOLTRANSFERASE oxidative stress GLUCOSE advanced glycation end products
下载PDF
Glyoxal induced advanced glycation end products formation in chicken meat emulsion instead of oxidation
12
作者 Rui Fang Zongshuai Zhu +2 位作者 Anthony Pius Bassey Iftikhar Ali Khan Ming Huang 《Food Science and Human Wellness》 SCIE 2022年第4期828-836,共9页
Advanced glycation end products(AGE) are potential harmful substances formed in the advanced Maillard reaction and increasingly investigated in muscle foods. However, the contribution of oxidation to the AGE formation... Advanced glycation end products(AGE) are potential harmful substances formed in the advanced Maillard reaction and increasingly investigated in muscle foods. However, the contribution of oxidation to the AGE formation is controversial. Moreover, reports on glyoxal(GO) induced AGE formation in chicken meat emulsion(CME) are limited. Thus, the effects of GO on emulsifying properties, rheological behavior and AGE formation in CME were investigated. Our findings exhibited that levels of Nε-carboxymethyllysine(CML) and Nε-carboxyethyllysine(CEL) were associated with lipid oxidation but not significantly(P > 0.05). Levels of AGE peaked when GO concentration ranged from 5 mmol/L(CML) to 10 mmol/L(CEL). The droplets’ aggregation associated with the disulfide bond when the concentration of GO was at 0.5–30 mmol/L while non-disulfide bond association occurred at 30–50 mmol/L GO concentration. In conclusion, compared to the effect of oxidation, GO exhibited the main role in the AGE formation of CME. This study will provide theoretical significance for further understanding and controlling the formation of AGE in CME. 展开更多
关键词 GLYOXAL EMULSION OXIDATION advanced glycation end products Chicken meat
下载PDF
Management of Maillard reaction-derived reactive carbonyl species and advanced glycation end products by tea and tea polyphenols 被引量:2
13
作者 Yue Luo Jianan Zhang +1 位作者 Chi-Tang Ho Shiming Li 《Food Science and Human Wellness》 SCIE 2022年第3期557-567,共11页
Tea as the most consumed beverage in the world has received enormous attention for its promoting health benefits.The deleterious effect ofα-dicarbonyls and AGEs formed in Maillard reaction is also a longterm challeng... Tea as the most consumed beverage in the world has received enormous attention for its promoting health benefits.The deleterious effect ofα-dicarbonyls and AGEs formed in Maillard reaction is also a longterm challenge.The connection between the two topics was the main aim of this review,to address and update the antiglycation effect and mechanism of tea and tea polyphenols.By analyzing recent publications,we have covered across chemistry models,cell lines and animal studies.Tea polyphenols,particularly catechins,showed outstanding antiglycation effect by trappingα-dicarbonyl compounds and impeding AGEs formation.Reduction of carbonyl stress brought alleviation to aging,diabetes,and collagen related diseases or complications through regulation of RAGE expression and subsequent MAPK and TGF-βpathway.Therefore,tea polyphenols can serve as promising natural candidates in the treatment and/or prevention of nephropathy,retinopathy,hepatopathy,hyperglycemia and obesity among others,by their potent antiglycation effect.Further studies need to address on aspects like exact mechanisms,solution of detection obstacles,balance of practical usage and harmful effects such as potential flavor damage and toxicity in food,to gain a comprehensive understanding of antiglycation activities of tea polyphenols and its actual application. 展开更多
关键词 TEA Tea polyphenols Reactive carbonyl species advanced glycation end product Maillard reaction
下载PDF
Advanced glycation end product signaling and metabolic complications:Dietary approach
14
作者 Mohammad Idreesh Khan Fauzia Ashfaq +5 位作者 Abdulrahman A Alsayegh Alshaimaa Hamouda Fahmida Khatoon Tahani Nasser Altamimi Fahad Saad Alhodieb Mirza Masroor Ali Beg 《World Journal of Diabetes》 SCIE 2023年第7期995-1012,共18页
Advanced glycation end products(AGEs)are a heterogeneous collection of compounds formed during industrial processing and home cooking through a sequence of nonenzymatic glycation reactions.The modern western diet is f... Advanced glycation end products(AGEs)are a heterogeneous collection of compounds formed during industrial processing and home cooking through a sequence of nonenzymatic glycation reactions.The modern western diet is full of heat-treated foods that contribute to AGE intake.Foods high in AGEs in the contemporary diet include processed cereal products.Due to industrialization and marketing strategies,restaurant meals are modified rather than being traditionally or conventionally cooked.Fried,grilled,baked,and boiled foods have the greatest AGE levels.Higher AGE-content foods include dry nuts,roasted walnuts,sunflower seeds,fried chicken,bacon,and beef.Animal proteins and processed plant foods contain furosine,acrylamide,heterocyclic amines,and 5-hydroxymethylfurfural.Furosine(2-furoil-methyl-lysine)is an amino acid found in cooked meat products and other processed foods.High concentrations of carboxymethyl-lysine,carboxyethyl-lysine,and methylglyoxal-O are found in heat-treated nonvegetarian foods,peanut butter,and cereal items.Increased plasma levels of AGEs,which are harmful chemicals that lead to age-related diseases and physiological aging,diabetes,and autoimmune/inflammatory rheumatic diseases such as systemic lupus erythematosus and rheumatoid arthritis.AGEs in the pathophysiology of metabolic diseases have been linked to individuals with diabetes mellitus who have peripheral nerves with high amounts of AGEs and diabetes has been linked to increased myelin glycation.Insulin resistance and hyperglycemia can impact numerous human tissues and organs,leading to long-term difficulties in a number of systems and organs,including the cardiovascular system.Plasma AGE levels are linked to all-cause mortality in individuals with diabetes who have fatal or nonfatal coronary artery disease,such as ventricular dysfunction.High levels of tissue AGEs are independently associated with cardiac systolic dysfunction in diabetic patients with heart failure compared with diabetic patients without heart failure.It is widely recognized that AGEs and oxidative stress play a key role in the cardiovascular complications of diabetes because they both influence and are impacted by oxidative stress.All chronic illnesses involve protein,lipid,or nucleic acid modifications including crosslinked and nondegradable aggregates known as AGEs.Endogenous AGE formation or dietary AGE uptake can result in additional protein modifications and stimulation of several inflammatory signaling pathways.Many of these systems,however,require additional explanation because they are not entirely obvious.This review summarizes the current evidence regarding dietary sources of AGEs and metabolism-related complications associated with AGEs. 展开更多
关键词 advanced glycation end products Receptor for advanced glycation end products Heat-treated diets Food safety Maillard reaction products Metabolic disorder DIABETES Cardiac complication
下载PDF
Food-advanced glycation end products aggravate the diabetic vascular complications via modulating the AGEs/RAGE pathway 被引量:6
15
作者 LV Xing LV Gao-Hong +2 位作者 DAI Guo-Ying SUN Hong-Mei XU Hui-Qin 《Chinese Journal of Natural Medicines》 SCIE CAS CSCD 2016年第11期844-855,共12页
The aim of this study was to investigate the effects of high-advanced glycation end products(AGEs) diet on diabetic vascular complications. The Streptozocin(STZ)-induced diabetic mice were fed with high-AGEs diet. Dia... The aim of this study was to investigate the effects of high-advanced glycation end products(AGEs) diet on diabetic vascular complications. The Streptozocin(STZ)-induced diabetic mice were fed with high-AGEs diet. Diabetic characteristics, indicators of renal and cardiovascular functions, and pathohistology of pancreas, heart and renal were evaluated. AGEs/RAGE/ROS pathway parameters were determined. During the experiments, the diabetic mice exhibited typical characteristics including weight loss, polydipsia,polyphagia, polyuria, high-blood glucose, and low-serum insulin levels. However, high-AGEs diet effectively aggravated these diabetic characteristics. It also increased the 24-h urine protein levels, serum levels of urea nitrogen, creatinine, c-reactive protein(CRP), low density lipoprotein(LDL), tumor necrosis factor-α(TNF-α), and interleukin-6(IL-6) in the diabetic mice. High-AGEs diet deteriorated the histology of pancreas, heart, and kidneys, and caused structural alterations of endothelial cells, mesangial cells and podocytes in renal cortex. Eventually, high-AGEs diet contributed to the high-AGE levels in serum and kidneys, high-levels of reactive oxygen species(ROS) and low-levels of superoxide dismutase(SOD) in serum, heart, and kidneys. It also upregulated RAGE mR NA and protein expression in heart and kidneys. Our results showed that high-AGEs diet deteriorated vascular complications in the diabetic mice. The activation of AGEs/RAGE/ROS pathway may be involved in the pathogenesis of vascular complications in diabetes. 展开更多
关键词 advanced glycation end products Diabetic vascular complications AGEs/RAGE/ROS pathway c-Reactive protein Reactive oxygen species
原文传递
Advanced glycation end product:A potential biomarker for risk stratification of non-alcoholic fatty liver disease in ELSA-Brasil study 被引量:1
16
作者 Evelyn Nunes Goulart da Silva Pereira Daniela Polessa Paula +4 位作者 Beatriz Peres de Araujo Maria de Jesus Mendes da Fonseca Maria de Fátima Haueisen Sander Diniz Anissa Daliry Rosane Harter Griep 《World Journal of Gastroenterology》 SCIE CAS 2021年第29期4913-4928,共16页
BACKGROUND Liver diseases are associated with the excess formation of advanced glycation end products(AGEs),which induce tissue inflammation and oxidative damage.However,the trend of oxidative marker levels according ... BACKGROUND Liver diseases are associated with the excess formation of advanced glycation end products(AGEs),which induce tissue inflammation and oxidative damage.However,the trend of oxidative marker levels according to the steatosis grade in non-alcoholic fatty liver disease(NAFLD)is unclear.AIM To compare serum AGE levels between participants with NAFLD accordingly to steatosis severity in the baseline ELSA-Brasil population.METHODS In 305 individuals at baseline ELSA-Brasil,NAFLD-associated steatosis was classified by ultrasound hepatic attenuation.The participants were grouped according to the severity of steatosis:mild and moderate/severe pooled.The measurement of serum fluorescent AGE concentrations was based on spectrofluorimetric detection.Serum AGE content and clinical and laboratory characteristics of the participants were compared between groups.The correlation between serum AGE levels and the grade of steatosis was analyzed.Logistic regression analysis was used to investigate the relationship between serum AGE levels and steatosis severity.A P value<0.05 was considered statistically significant.RESULTS According to the steatosis severity spectrum in NAFLD,from mild to moderate/severe,individuals with the most severe steatosis grade had a higher incidence of metabolic syndrome(63%vs 34%,P≤0.001),diabetes mellitus(37%vs 14%,P≤0.001),and high cholesterol levels(51%vs 33%,P<0.001).Moreover,individuals with increasing severity of steatosis presented increasing waist circumference,body mass index,systolic and diastolic blood pressure,fasting blood glucose,glycated hemoglobin,insulin,triglycerides,alanine aminotransferase,gamma-glutamyl transferase,C-reactive protein,and uric acid levels and lower high-density lipoprotein.Higher serum AGE content was present in the moderate/severe group of individuals than in the mild group(P=0.008).In addition,the serum AGE levels were correlated with the steatosis grade in the overall sample(rho=0.146,P=0.010).Logistic regression analysis,after adjusting for confounding variables,showed that subjects with higher serum AGE content had a 4.6-fold increased chance of having moderate or severe steatosis when compared to low levels of serum AGEs.According to the results of the receiver operator characteristic curves analyses(areas under the curve,AUC=0.83),AGEs could be a good marker of steatosis severity in patients with NAFLD and might be a potential biomarker in predicting NAFLD progression,strengthening the involvement of AGE in NAFLD pathogenesis.CONCLUSION NAFLD-associated steatosis was associated with serum AGE levels;therefore,plasmatic fluorescent AGE quantification by spectroscopy could be a promising alternative method to monitor progression from mild to severe NAFLD accordingly to steatosis grade. 展开更多
关键词 advanced glycation end products Non-alcoholic fatty liver disease STEATOSIS ELSA-Brasil study Spectroscopy
下载PDF
High glucose reduces Nrf2-dependent cRAGE release and enhances inflammasome-dependent IL-1βproduction in monocytes:the modulatory effects of EGCG
17
作者 Chi-Hao Wu Yin-Hsuan Chang +2 位作者 Chin-Lin Hsu Sheng-Yi Chen Gow-Chin Yen 《Food Science and Human Wellness》 SCIE CSCD 2024年第3期1531-1542,共12页
Soluble receptor for advanced glycation end products(sRAGE)acts as a decoy sequestering of RAGE ligands,thus preventing the activation of the ligand-RAGE axis linking human diseases.However,the molecular mechanisms un... Soluble receptor for advanced glycation end products(sRAGE)acts as a decoy sequestering of RAGE ligands,thus preventing the activation of the ligand-RAGE axis linking human diseases.However,the molecular mechanisms underlying sRAGE remain unclear.In this study,THP-1 monocytes were cultured in normal glucose(NG,5.5 mmol/L)and high glucose(HG,15 mmol/L)to investigate the effects of diabetesrelevant glucose concentrations on sRAGE and interleukin-1β(IL-1β)secretion.The modulatory effects of epigallocatechin gallate(EGCG)in response to HG challenge were also evaluated.HG enhanced intracellular reactive oxygen species(ROS)generation and RAGE expression.The secretion of sRAGE,including esRAGE and cRAGE,was reduced under HG conditions,together with the downregulation of a disintegrin and metallopeptidase 10(ADAM10)and nuclear factor erythroid 2-related factor 2(Nrf2)nuclear translocation.Mechanistically,the HG effects were counteracted by siRAGE and exacerbated by siNrf2.Chromatin immunoprecipitation results showed that Nrf2 binding to the ADAM10 promoter and HG interfered with this binding.Our data reinforce the notion that RAGE and Nrf2 might be sRAGE-regulating factors.Under HG conditions,the treatment of EGCG reduced ROS generation and RAGE activation.EGCG-stimulated cRAGE release was likely caused by the upregulation of the Nrf2-ADAM10 pathway.EGCG inhibited HG-mediated NLRP3 inflammasome activation at least partly by stimulating sRAGE,thereby reducing IL-1βrelease. 展开更多
关键词 Epigallocatechin gallate(EGCG) INFLAMMASOME Nuclear factor erythroid 2-related factor 2(Nrf2) Receptor for advanced glycation end products(RAGE) Soluble RAGE(sRAGE)
下载PDF
Advanced glycation end productions and tendon stem/progenitor cells in pathogenesis of diabetic tendinopathy
18
作者 Liu Shi Pan-Pan Lu +2 位作者 Guang-Chun Dai Ying-Juan Li Yun-Feng Rui 《World Journal of Stem Cells》 SCIE 2021年第9期1338-1348,共11页
Tendinopathy is a challenging complication observed in patients with diabetes mellitus.Tendinopathy usually leads to chronic pain,limited joint motion,and even ruptured tendons.Imaging and histological analyses have r... Tendinopathy is a challenging complication observed in patients with diabetes mellitus.Tendinopathy usually leads to chronic pain,limited joint motion,and even ruptured tendons.Imaging and histological analyses have revealed pathological changes in various tendons of patients with diabetes,including disorganized arrangement of collagen fibers,microtears,calcium nodules,and advanced glycation end product(AGE)deposition.Tendon-derived stem/progenitor cells(TSPCs)were found to maintain hemostasis and to participate in the reversal of tendinopathy.We also discovered the aberrant osteochondrogenesis of TSPCs in vitro.However,the relationship between AGEs and TSPCs in diabetic tendinopathy and the underlying mechanism remain unclear.In this review,we summarize the current findings in this field and hypothesize that AGEs could alter the properties of tendons in patients with diabetes by regulating the proliferation and differentiation of TSPCs in vivo. 展开更多
关键词 TendINOPATHY Diabetes mellitus Tendon stem/progenitor cells advanced glycation end products
下载PDF
Novel Inhibitory Effects of Glycyrrhizic Acid on the Accumulation of Advanced Glycation End Product and Its Receptor Expression 被引量:1
19
作者 Hong Sheng Cheng Joana Magdelene Xiao Fang Kong +3 位作者 Athena Xin Hui Ng Weng Keong Chan So Ha Ton Khalid Abdul Kadir 《Natural Products and Bioprospecting》 CAS 2014年第6期325-333,共9页
Beneficial effects of glycyrrhizic acid(GA),a bioactive extract of licorice root,in the prevention of metabolic syndrome have been consistently reported while advanced glycation end products(AGE)and receptor for advan... Beneficial effects of glycyrrhizic acid(GA),a bioactive extract of licorice root,in the prevention of metabolic syndrome have been consistently reported while advanced glycation end products(AGE)and receptor for advanced glycation end product(RAGE)are the leading factors in the development of diabetes mellitus.The aim of this study was to investigate the effects of GA on the AGE-RAGE axis using high-fat/high-sucrose(HF/HS)diet-induced metabolic syndrome rat models.Twenty four male Sprague–Dawley rats were randomly assigned into three groups for 4 weeks:(1)Group A,normal diet with standard rat chow;(2)Group B,HF/HS diet;(3)Group C,HF/HS diet and oral administration of 100 mg/kg GA per day.The results showed that HF/HS diet elevated the fasting blood glucose level and insulin resistance index which was prevented by GA supplementation.GA treatment significantly lowered the circulating AGE independent of its glucose-lowering effect.HF/HS diet also triggered RAGE upregulation in the abdominal muscles while GA administration downregulated RAGE expression in the abdominal muscles,aorta and subcutaneous adipose tissues.In conclusion,HF/HS diet could cause glucose intolerance,insulin resistance and upregulation of RAGE expression while GA ameliorated the metabolic dysregulation besides exhibiting inhibitory effects on the AGE-RAGE axis. 展开更多
关键词 Metabolic syndrome Receptor for advanced glycation end product LICORICE High-fat/high-sucrose diet
下载PDF
Emerging roles of microRNAs as diagnostics and potential therapeutic interest in type 2 diabetes mellitus
20
作者 Dharmsheel Shrivastav Desh Deepak Singh 《World Journal of Clinical Cases》 SCIE 2024年第3期525-537,共13页
BACKGROUND Type 2 diabetes mellitus(T2DM)is a metabolic disease of impaired glucose utilization.Uncontrolled high sugar levels lead to advanced glycation end products(AGEs),which affects several metabolic pathways by ... BACKGROUND Type 2 diabetes mellitus(T2DM)is a metabolic disease of impaired glucose utilization.Uncontrolled high sugar levels lead to advanced glycation end products(AGEs),which affects several metabolic pathways by its receptor of advanced glycation end products(RAGE)and causes diabetic complication.MiRNAs are small RNA molecules which regulate genes linked to diabetes and affect AGEs pathogenesis,and target tissues,influencing health and disease processes.AIM To explore miRNA roles in T2DM's metabolic pathways for potential therapeutic and diagnostic advancements in diabetes complications.METHODS We systematically searched the electronic database PubMed using keywords.We included free,full-length research articles that evaluate the role of miRNAs in T2DM and its complications,focusing on genetic and molecular disease mechanisms.After assessing the full-length papers of the shortlisted articles,we included 12 research articles.RESULTS Several types of miRNAs are linked in metabolic pathways which are affected by AGE/RAGE axis in T2DM and its complications.miR-96-5p,miR-7-5p,miR-132,has_circ_0071106,miR-143,miR-21,miR-145-5p,and more are associated with various aspects of T2DM,including disease risk,diagnostic markers,complications,and gene regulation.CONCLUSION Targeting the AGE/RAGE axis,with a focus on miRNA regulation,holds promise for managing T2DM and its complications.MiRNAs have therapeutic potential as they can influence the metabolic pathways affected by AGEs and RAGE,potentially reducing inflammation,oxidative stress,and vascular complications.Additionally,miRNAs may serve as early diagnostic biomarkers for T2DM.Further research in this area may lead to innovative therapeutic strategies for diabetes and its associated complications. 展开更多
关键词 Type 2 diabetes mellitus MICRORNAS advanced glycation end products Receptor for advanced glycation end products
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部