The increase in number of people using the Internet leads to increased cyberattack opportunities.Advanced Persistent Threats,or APTs,are among the most dangerous targeted cyberattacks.APT attacks utilize various advan...The increase in number of people using the Internet leads to increased cyberattack opportunities.Advanced Persistent Threats,or APTs,are among the most dangerous targeted cyberattacks.APT attacks utilize various advanced tools and techniques for attacking targets with specific goals.Even countries with advanced technologies,like the US,Russia,the UK,and India,are susceptible to this targeted attack.APT is a sophisticated attack that involves multiple stages and specific strategies.Besides,TTP(Tools,Techniques,and Procedures)involved in the APT attack are commonly new and developed by an attacker to evade the security system.However,APTs are generally implemented in multiple stages.If one of the stages is detected,we may apply a defense mechanism for subsequent stages,leading to the entire APT attack failure.The detection at the early stage of APT and the prediction of the next step in the APT kill chain are ongoing challenges.This survey paper will provide knowledge about APT attacks and their essential steps.This follows the case study of known APT attacks,which will give clear information about the APT attack process—in later sections,highlighting the various detection methods defined by different researchers along with the limitations of the work.Data used in this article comes from the various annual reports published by security experts and blogs and information released by the enterprise networks targeted by the attack.展开更多
Recently,with the normalization of non-face-to-face online environments in response to the COVID-19 pandemic,the possibility of cyberattacks through endpoints has increased.Numerous endpoint devices are managed meticu...Recently,with the normalization of non-face-to-face online environments in response to the COVID-19 pandemic,the possibility of cyberattacks through endpoints has increased.Numerous endpoint devices are managed meticulously to prevent cyberattacks and ensure timely responses to potential security threats.In particular,because telecommuting,telemedicine,and teleeducation are implemented in uncontrolled environments,attackers typically target vulnerable endpoints to acquire administrator rights or steal authentication information,and reports of endpoint attacks have been increasing considerably.Advanced persistent threats(APTs)using various novel variant malicious codes are a form of a sophisticated attack.However,conventional commercial antivirus and anti-malware systems that use signature-based attack detectionmethods cannot satisfactorily respond to such attacks.In this paper,we propose a method that expands the detection coverage inAPT attack environments.In this model,an open-source threat detector and log collector are used synergistically to improve threat detection performance.Extending the scope of attack log collection through interworking between highly accessible open-source tools can efficiently increase the detection coverage of tactics and techniques used to deal with APT attacks,as defined by MITRE Adversarial Tactics,Techniques,and Common Knowledge(ATT&CK).We implemented an attack environment using an APT attack scenario emulator called Carbanak and analyzed the detection coverage of Google Rapid Response(GRR),an open-source threat detection tool,and Graylog,an open-source log collector.The proposed method expanded the detection coverage against MITRE ATT&CK by approximately 11%compared with that conventional methods.展开更多
The detection of cyber threats has recently been a crucial research domain as the internet and data drive people’s livelihood.Several cyber-attacks lead to the compromise of data security.The proposed system offers c...The detection of cyber threats has recently been a crucial research domain as the internet and data drive people’s livelihood.Several cyber-attacks lead to the compromise of data security.The proposed system offers complete data protection from Advanced Persistent Threat(APT)attacks with attack detection and defence mechanisms.The modified lateral movement detection algorithm detects the APT attacks,while the defence is achieved by the Dynamic Deception system that makes use of the belief update algorithm.Before termination,every cyber-attack undergoes multiple stages,with the most prominent stage being Lateral Movement(LM).The LM uses a Remote Desktop protocol(RDP)technique to authenticate the unauthorised host leaving footprints on the network and host logs.An anomaly-based approach leveraging the RDP event logs on Windows is used for detecting the evidence of LM.After extracting various feature sets from the logs,the RDP sessions are classified using machine-learning techniques with high recall and precision.It is found that the AdaBoost classifier offers better accuracy,precision,F1 score and recall recording 99.9%,99.9%,0.99 and 0.98%.Further,a dynamic deception process is used as a defence mechanism to mitigateAPTattacks.A hybrid encryption communication,dynamic(Internet Protocol)IP address generation,timing selection and policy allocation are established based on mathematical models.A belief update algorithm controls the defender’s action.The performance of the proposed system is compared with the state-of-the-art models.展开更多
The number of cybersecurity incidents is on the rise despite significant investment in security measures.The existing conventional security approaches have demonstrated limited success against some of the more complex...The number of cybersecurity incidents is on the rise despite significant investment in security measures.The existing conventional security approaches have demonstrated limited success against some of the more complex cyber-attacks.This is primarily due to the sophistication of the attacks and the availability of powerful tools.Interconnected devices such as the Internet of Things(IoT)are also increasing attack exposures due to the increase in vulnerabilities.Over the last few years,we have seen a trend moving towards embracing edge technologies to harness the power of IoT devices and 5G networks.Edge technology brings processing power closer to the network and brings many advantages,including reduced latency,while it can also introduce vulnerabilities that could be exploited.Smart cities are also dependent on technologies where everything is interconnected.This interconnectivity makes them highly vulnerable to cyber-attacks,especially by the Advanced Persistent Threat(APT),as these vulnerabilities are amplified by the need to integrate new technologies with legacy systems.Cybercriminals behind APT attacks have recently been targeting the IoT ecosystems,prevalent in many of these cities.In this paper,we used a publicly available dataset on Advanced Persistent Threats(APT)and developed a data-driven approach for detecting APT stages using the Cyber Kill Chain.APTs are highly sophisticated and targeted forms of attacks that can evade intrusion detection systems,resulting in one of the greatest current challenges facing security professionals.In this experiment,we used multiple machine learning classifiers,such as Naïve Bayes,Bayes Net,KNN,Random Forest and Support Vector Machine(SVM).We used Weka performance metrics to show the numeric results.The best performance result of 91.1%was obtained with the Naïve Bayes classifier.We hope our proposed solution will help security professionals to deal with APTs in a timely and effective manner.展开更多
Considering the stealthiness and persistence of Advanced Persistent Threats(APTs),system audit logs are leveraged in recent studies to construct system entity interaction provenance graphs to unveil threats in a host....Considering the stealthiness and persistence of Advanced Persistent Threats(APTs),system audit logs are leveraged in recent studies to construct system entity interaction provenance graphs to unveil threats in a host.Rule-based provenance graph APT detection approaches require elaborate rules and cannot detect unknown attacks,and existing learning-based approaches are limited by the lack of available APT attack samples or generally only perform graph-level anomaly detection,which requires lots of manual efforts to locate attack entities.This paper proposes an APT-exploited process detection approach called ThreatSniffer,which constructs the benign provenance graph from attack-free audit logs,fits normal system entity interactions and then detects APT-exploited processes by predicting the rationality of entity interactions.Firstly,ThreatSniffer understands system entities in terms of their file paths,interaction sequences,and the number distribution of interaction types and uses the multi-head self-attention mechanism to fuse these semantics.Then,based on the insight that APT-exploited processes interact with system entities they should not invoke,ThreatSniffer performs negative sampling on the benign provenance graph to generate non-existent edges,thus characterizing irrational entity interactions without requiring APT attack samples.At last,it employs a heterogeneous graph neural network as the interaction prediction model to aggregate the contextual information of entity interactions,and locate processes exploited by attackers,thereby achieving fine-grained APT detection.Evaluation results demonstrate that anomaly-based detection enables ThreatSniffer to identify all attack activities.Compared to the node-level APT detection method APT-KGL,ThreatSniffer achieves a 6.1%precision improvement because of its comprehensive understanding of entity semantics.展开更多
In the tobacco industry,insider employee attack is a thorny problem that is difficult to detect.To solve this issue,this paper proposes an insider threat detection method based on heterogeneous graph embedding.First,t...In the tobacco industry,insider employee attack is a thorny problem that is difficult to detect.To solve this issue,this paper proposes an insider threat detection method based on heterogeneous graph embedding.First,the interrelationships between logs are fully considered,and log entries are converted into heterogeneous graphs based on these relationships.Second,the heterogeneous graph embedding is adopted and each log entry is represented as a low-dimensional feature vector.Then,normal logs and malicious logs are classified into different clusters by clustering algorithm to identify malicious logs.Finally,the effectiveness and superiority of the method is verified through experiments on the CERT dataset.The experimental results show that this method has better performance compared to some baseline methods.展开更多
As cyber threats keep changing and business environments adapt, a comprehensive approach to disaster recovery involves more than just defensive measures. This research delves deep into the strategies required to respo...As cyber threats keep changing and business environments adapt, a comprehensive approach to disaster recovery involves more than just defensive measures. This research delves deep into the strategies required to respond to threats and anticipate and mitigate them proactively. Beginning with understanding the critical need for a layered defense and the intricacies of the attacker’s journey, the research offers insights into specialized defense techniques, emphasizing the importance of timely and strategic responses during incidents. Risk management is brought to the forefront, underscoring businesses’ need to adopt mature risk assessment practices and understand the potential risk impact areas. Additionally, the value of threat intelligence is explored, shedding light on the importance of active engagement within sharing communities and the vigilant observation of adversary motivations. “Beyond Defense: Proactive Approaches to Disaster Recovery and Threat Intelligence in Modern Enterprises” is a comprehensive guide for organizations aiming to fortify their cybersecurity posture, marrying best practices in proactive and reactive measures in the ever-challenging digital realm.展开更多
文摘The increase in number of people using the Internet leads to increased cyberattack opportunities.Advanced Persistent Threats,or APTs,are among the most dangerous targeted cyberattacks.APT attacks utilize various advanced tools and techniques for attacking targets with specific goals.Even countries with advanced technologies,like the US,Russia,the UK,and India,are susceptible to this targeted attack.APT is a sophisticated attack that involves multiple stages and specific strategies.Besides,TTP(Tools,Techniques,and Procedures)involved in the APT attack are commonly new and developed by an attacker to evade the security system.However,APTs are generally implemented in multiple stages.If one of the stages is detected,we may apply a defense mechanism for subsequent stages,leading to the entire APT attack failure.The detection at the early stage of APT and the prediction of the next step in the APT kill chain are ongoing challenges.This survey paper will provide knowledge about APT attacks and their essential steps.This follows the case study of known APT attacks,which will give clear information about the APT attack process—in later sections,highlighting the various detection methods defined by different researchers along with the limitations of the work.Data used in this article comes from the various annual reports published by security experts and blogs and information released by the enterprise networks targeted by the attack.
基金This study is the result of a commissioned research project supported by the affiliated institute of ETRI(No.2021-026)partially supported by the NationalResearch Foundation of Korea(NRF)grant funded by the Korean government(MSIT)(No.2020R1F1A1061107)+2 种基金the Korea Institute for Advancement of Technology(KIAT)grant funded by the Korean government(MOTIE)(P0008703,The Competency Development Program for Industry Specialist)the MSIT under the ICAN(ICT Challenge and Advanced Network of HRD)program[grant number IITP-2022-RS-2022-00156310]supervised by the Institute of Information&Communication Technology Planning and Evaluation(IITP).
文摘Recently,with the normalization of non-face-to-face online environments in response to the COVID-19 pandemic,the possibility of cyberattacks through endpoints has increased.Numerous endpoint devices are managed meticulously to prevent cyberattacks and ensure timely responses to potential security threats.In particular,because telecommuting,telemedicine,and teleeducation are implemented in uncontrolled environments,attackers typically target vulnerable endpoints to acquire administrator rights or steal authentication information,and reports of endpoint attacks have been increasing considerably.Advanced persistent threats(APTs)using various novel variant malicious codes are a form of a sophisticated attack.However,conventional commercial antivirus and anti-malware systems that use signature-based attack detectionmethods cannot satisfactorily respond to such attacks.In this paper,we propose a method that expands the detection coverage inAPT attack environments.In this model,an open-source threat detector and log collector are used synergistically to improve threat detection performance.Extending the scope of attack log collection through interworking between highly accessible open-source tools can efficiently increase the detection coverage of tactics and techniques used to deal with APT attacks,as defined by MITRE Adversarial Tactics,Techniques,and Common Knowledge(ATT&CK).We implemented an attack environment using an APT attack scenario emulator called Carbanak and analyzed the detection coverage of Google Rapid Response(GRR),an open-source threat detection tool,and Graylog,an open-source log collector.The proposed method expanded the detection coverage against MITRE ATT&CK by approximately 11%compared with that conventional methods.
文摘The detection of cyber threats has recently been a crucial research domain as the internet and data drive people’s livelihood.Several cyber-attacks lead to the compromise of data security.The proposed system offers complete data protection from Advanced Persistent Threat(APT)attacks with attack detection and defence mechanisms.The modified lateral movement detection algorithm detects the APT attacks,while the defence is achieved by the Dynamic Deception system that makes use of the belief update algorithm.Before termination,every cyber-attack undergoes multiple stages,with the most prominent stage being Lateral Movement(LM).The LM uses a Remote Desktop protocol(RDP)technique to authenticate the unauthorised host leaving footprints on the network and host logs.An anomaly-based approach leveraging the RDP event logs on Windows is used for detecting the evidence of LM.After extracting various feature sets from the logs,the RDP sessions are classified using machine-learning techniques with high recall and precision.It is found that the AdaBoost classifier offers better accuracy,precision,F1 score and recall recording 99.9%,99.9%,0.99 and 0.98%.Further,a dynamic deception process is used as a defence mechanism to mitigateAPTattacks.A hybrid encryption communication,dynamic(Internet Protocol)IP address generation,timing selection and policy allocation are established based on mathematical models.A belief update algorithm controls the defender’s action.The performance of the proposed system is compared with the state-of-the-art models.
基金supported in part by the School of Computing and Digital Technology at Birmingham City UniversityThe work of M.A.Rahman was supported in part by the Flagship Grant RDU190374.
文摘The number of cybersecurity incidents is on the rise despite significant investment in security measures.The existing conventional security approaches have demonstrated limited success against some of the more complex cyber-attacks.This is primarily due to the sophistication of the attacks and the availability of powerful tools.Interconnected devices such as the Internet of Things(IoT)are also increasing attack exposures due to the increase in vulnerabilities.Over the last few years,we have seen a trend moving towards embracing edge technologies to harness the power of IoT devices and 5G networks.Edge technology brings processing power closer to the network and brings many advantages,including reduced latency,while it can also introduce vulnerabilities that could be exploited.Smart cities are also dependent on technologies where everything is interconnected.This interconnectivity makes them highly vulnerable to cyber-attacks,especially by the Advanced Persistent Threat(APT),as these vulnerabilities are amplified by the need to integrate new technologies with legacy systems.Cybercriminals behind APT attacks have recently been targeting the IoT ecosystems,prevalent in many of these cities.In this paper,we used a publicly available dataset on Advanced Persistent Threats(APT)and developed a data-driven approach for detecting APT stages using the Cyber Kill Chain.APTs are highly sophisticated and targeted forms of attacks that can evade intrusion detection systems,resulting in one of the greatest current challenges facing security professionals.In this experiment,we used multiple machine learning classifiers,such as Naïve Bayes,Bayes Net,KNN,Random Forest and Support Vector Machine(SVM).We used Weka performance metrics to show the numeric results.The best performance result of 91.1%was obtained with the Naïve Bayes classifier.We hope our proposed solution will help security professionals to deal with APTs in a timely and effective manner.
基金This work was supported by the National Natural Science Foundation of China(Nos.U19A2081,62202320)the Fundamental Research Funds for the Central Universities(Nos.2022SCU12116,2023SCU12129,2023SCU12126)+1 种基金the Science and Engineering Connotation Development Project of Sichuan University(No.2020SCUNG129)the Key Laboratory of Data Protection and Intelligent Management(Sichuan University),Ministry of Education.
文摘Considering the stealthiness and persistence of Advanced Persistent Threats(APTs),system audit logs are leveraged in recent studies to construct system entity interaction provenance graphs to unveil threats in a host.Rule-based provenance graph APT detection approaches require elaborate rules and cannot detect unknown attacks,and existing learning-based approaches are limited by the lack of available APT attack samples or generally only perform graph-level anomaly detection,which requires lots of manual efforts to locate attack entities.This paper proposes an APT-exploited process detection approach called ThreatSniffer,which constructs the benign provenance graph from attack-free audit logs,fits normal system entity interactions and then detects APT-exploited processes by predicting the rationality of entity interactions.Firstly,ThreatSniffer understands system entities in terms of their file paths,interaction sequences,and the number distribution of interaction types and uses the multi-head self-attention mechanism to fuse these semantics.Then,based on the insight that APT-exploited processes interact with system entities they should not invoke,ThreatSniffer performs negative sampling on the benign provenance graph to generate non-existent edges,thus characterizing irrational entity interactions without requiring APT attack samples.At last,it employs a heterogeneous graph neural network as the interaction prediction model to aggregate the contextual information of entity interactions,and locate processes exploited by attackers,thereby achieving fine-grained APT detection.Evaluation results demonstrate that anomaly-based detection enables ThreatSniffer to identify all attack activities.Compared to the node-level APT detection method APT-KGL,ThreatSniffer achieves a 6.1%precision improvement because of its comprehensive understanding of entity semantics.
基金Supported by the National Natural Science Foundation of China(No.62203390)the Science and Technology Project of China TobaccoZhejiang Industrial Co.,Ltd(No.ZJZY2022E004)。
文摘In the tobacco industry,insider employee attack is a thorny problem that is difficult to detect.To solve this issue,this paper proposes an insider threat detection method based on heterogeneous graph embedding.First,the interrelationships between logs are fully considered,and log entries are converted into heterogeneous graphs based on these relationships.Second,the heterogeneous graph embedding is adopted and each log entry is represented as a low-dimensional feature vector.Then,normal logs and malicious logs are classified into different clusters by clustering algorithm to identify malicious logs.Finally,the effectiveness and superiority of the method is verified through experiments on the CERT dataset.The experimental results show that this method has better performance compared to some baseline methods.
文摘As cyber threats keep changing and business environments adapt, a comprehensive approach to disaster recovery involves more than just defensive measures. This research delves deep into the strategies required to respond to threats and anticipate and mitigate them proactively. Beginning with understanding the critical need for a layered defense and the intricacies of the attacker’s journey, the research offers insights into specialized defense techniques, emphasizing the importance of timely and strategic responses during incidents. Risk management is brought to the forefront, underscoring businesses’ need to adopt mature risk assessment practices and understand the potential risk impact areas. Additionally, the value of threat intelligence is explored, shedding light on the importance of active engagement within sharing communities and the vigilant observation of adversary motivations. “Beyond Defense: Proactive Approaches to Disaster Recovery and Threat Intelligence in Modern Enterprises” is a comprehensive guide for organizations aiming to fortify their cybersecurity posture, marrying best practices in proactive and reactive measures in the ever-challenging digital realm.