The preparation of LiNi_(0.8)Co_(0.2)O_2 was discussed by the multiply sintering method for solid reaction, in which the sintered material was smashed, ground and pelletted between two successive sintering steps. The...The preparation of LiNi_(0.8)Co_(0.2)O_2 was discussed by the multiply sintering method for solid reaction, in which the sintered material was smashed, ground and pelletted between two successive sintering steps. The optimum technological condition was obtained through orthogonal experiments by L_9(3~4) and DTA analysis. The result indicates that the factors of effecting the electrochemical properties of synthesized LiNi_(0.8)Co_(0.2)O_2 are molar ratio of Li/Ni/Co, oxygen pressure, homothermal time, the final sintering temperature in turn according to its importance. The oxygen pressure is reviewed independently and the technological condition is further optimized. With the same method, rare earth element Ce was studied as substitute element of Co and the cathode material of LiNi_(0.95)Ce_(0.05)O_2 with excellent electrochemical properties was prepared. The electrochemical testing results of LiNi_(0.8)Co_(0.2)O_2 and LiNi_(0.95)Ce_(0.05)O_2 experimental batteries show that discharge capacities of them reach 165 and 148 mAh·g^(-1) respectively and the persistence is more than 9 h at 3.7 V.展开更多
We propose and investigate a compact optical fiber sensor that aims to measure the torsion in both amount and direction with high sensitivity.This sensor is configured by a triangular-prism-shaped long-period fiber gr...We propose and investigate a compact optical fiber sensor that aims to measure the torsion in both amount and direction with high sensitivity.This sensor is configured by a triangular-prism-shaped long-period fiber grating,which is fabricated by the high frequency CO_(2) laser polished method.The unique design of the triangular-shaped structure breaks the rotational symmetry of the optical fiber and provides high sensitivity for torsion measurement.In preliminary experiments,the torsion response of the sensor achieves a good stability and linearity.The torsion sensitivity is 0.54 nm/(rad/m),which renders the proposed structure a highly sensitive torsion sensor.展开更多
文摘The preparation of LiNi_(0.8)Co_(0.2)O_2 was discussed by the multiply sintering method for solid reaction, in which the sintered material was smashed, ground and pelletted between two successive sintering steps. The optimum technological condition was obtained through orthogonal experiments by L_9(3~4) and DTA analysis. The result indicates that the factors of effecting the electrochemical properties of synthesized LiNi_(0.8)Co_(0.2)O_2 are molar ratio of Li/Ni/Co, oxygen pressure, homothermal time, the final sintering temperature in turn according to its importance. The oxygen pressure is reviewed independently and the technological condition is further optimized. With the same method, rare earth element Ce was studied as substitute element of Co and the cathode material of LiNi_(0.95)Ce_(0.05)O_2 with excellent electrochemical properties was prepared. The electrochemical testing results of LiNi_(0.8)Co_(0.2)O_2 and LiNi_(0.95)Ce_(0.05)O_2 experimental batteries show that discharge capacities of them reach 165 and 148 mAh·g^(-1) respectively and the persistence is more than 9 h at 3.7 V.
基金supported by the Joint Research Fund in Astronomy under cooperative agreement between the National Natural Science Foundation of China(NSFC)and Chinese Academy of Sciences(CAS)(Nos.U1831115,U1631239,and U1931206)the Dean Project of Guangxi Key Laboratory of Wireless Broadband Communication and Signal Processing(No.GXKL06190106)the Key Projects of Natural Science Foundation of Heilongjiang Province(No.ZD2019H003)。
文摘We propose and investigate a compact optical fiber sensor that aims to measure the torsion in both amount and direction with high sensitivity.This sensor is configured by a triangular-prism-shaped long-period fiber grating,which is fabricated by the high frequency CO_(2) laser polished method.The unique design of the triangular-shaped structure breaks the rotational symmetry of the optical fiber and provides high sensitivity for torsion measurement.In preliminary experiments,the torsion response of the sensor achieves a good stability and linearity.The torsion sensitivity is 0.54 nm/(rad/m),which renders the proposed structure a highly sensitive torsion sensor.