The purpose of this study is to evaluate the Spectral Angle Mapper (SAM) classification method for determining the optimum threshold (maximum spectral angle) to unveil the hydrothermal mineral assemblages related ...The purpose of this study is to evaluate the Spectral Angle Mapper (SAM) classification method for determining the optimum threshold (maximum spectral angle) to unveil the hydrothermal mineral assemblages related to mineral deposits. The study area indicates good potential for Cu-Au porphyry, epithermal gold deposits and hydrothermal alteration well developed in arid and semiarid climates, which makes this region significant for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) image processing analysis. Given that achieving an acceptable mineral mapping requires knowing the alteration patterns, petrochemistry and petrogenesis of the igneous rocks while considering the effect of weathering, overprinting of supergene alteration, overprinting of hypogene alteration and host rock spectral mixing, SAM classification was implemented for argillic, sericitic, propylitic, alunitization, silicification and iron oxide zones of six previously known mineral deposits: Maherabad, a Cu-Au porphyry system; Sheikhabad, an upper part of Cu-Au porphyry system; Khoonik, an Intrusion related Au system; Barmazid, a low sulfidation epithermal system; Khopik, a Cu-Au porphyry system; and Hanish, an epithermal Au system. Thus, the investigation showed that although the whole alteration zones are affected by mixing, it is also possible to produce a favorable hydrothermal mineral map by such complementary data as petrology, petrochemistry and alteration patterns.展开更多
遥感卫星的多光谱数据应用于找矿已取得显著成效,2004年7月中国卫星地面站开始提供ASTER(Advanced Space-borne Thermal Emission and Reflection Radiometer,高级星载热发射反照辐射计)数据,因涵盖波长范围宽[VNIR(Visible and Near In...遥感卫星的多光谱数据应用于找矿已取得显著成效,2004年7月中国卫星地面站开始提供ASTER(Advanced Space-borne Thermal Emission and Reflection Radiometer,高级星载热发射反照辐射计)数据,因涵盖波长范围宽[VNIR(Visible and Near Infra-red)、SWIR(Short wave-length Infra-red)、TIR(Thermal Infra-red)]、波段多(14个波段)、性价比合理等因素,ASTER数据的研究迅速发展。长久以来,对覆盖区进行蚀变遥感异常信息提取一直是遥感找矿的关注点之一。笔者等利用ASTER数据对浅覆盖区——包古图斑岩铜矿的Ⅱ号、Ⅴ号斑岩体进行蚀变遥感异常提取,提取的蚀变异常与野外地质情况吻合性好。分别提取了光谱特征谱带差异明显的2组蚀变矿物的异常信息:第一组是蒙脱石、埃洛石、伊利石与绢云母;第二组是方解石、黑云母与绿泥石。提出了需要进一步工作的异常靶区。展开更多
The topographical suitability assessment of human settlements(SAHS) creates a solid foundation for regional population distribution and socio-economic development. Local elevation range(LER) is an important factor tha...The topographical suitability assessment of human settlements(SAHS) creates a solid foundation for regional population distribution and socio-economic development. Local elevation range(LER) is an important factor that can be used to assess the suitability of different terrains for sustaining human settlements. However, current digital elevation model(DEM)-based LER products suffer from some challenges typically because of their subjectively selected neighborhood scales and coarser spatial resolution. In this study, we initially determined the optimal statistical window and then calculated the appropriate LER with the finer resolution data of the Advanced Spaceborne Thermal Emission and Reflection Radiometer Global DEM(ASTER GDEM) products for China. Then, the appropriate LER was used to evaluate the topographical SAHS and its correlations with the national gridded population distribution(1 km × 1 km) in 2010. The results show that the optimal statistical window for calculating a 1 arc-second(about 30 m) resolution GDEM LER for China can be determined using a 51 × 51 grid unit(width × height) within a rectangular neighborhood, corresponding to an area of about 2.34 km^2. Secondly, the LER values in the southern and western China were greater than those of the north and east, showing a trend which consistently reflects the general spatial features of landforms. Finally, the relationship between GDEM LER and population density was highly correlated with the R^2 value of 0.81. It showed that 85.22% of the Chinese population was located in areas where the LER is lower than 500 m. The topographically suitable area within China decreased from the southeastern coastal zone towards the northwestern inland areas due to transition from plains and basins to plateaus and mountains. The total area of moderate to high suitable level was 423.84 × 10~4 km^2, or 44.15% of the total land area, with 88.17% of the national population. Our study demonstrates the usefulness of appropriate LER in evaluating the topographical SAHS as well as its significant impact on population distribution.展开更多
The Mesozoic ophiolitic Mélange, north of Nain in the Central-East Iran Microplate (CEIM) comprises serpentinized ultramafic rocks, harzburgites, dunite, gabbro, peridotite, pelagic limestone and other carbonate ...The Mesozoic ophiolitic Mélange, north of Nain in the Central-East Iran Microplate (CEIM) comprises serpentinized ultramafic rocks, harzburgites, dunite, gabbro, peridotite, pelagic limestone and other carbonate rocks. The excellent and vast exposure of this desert region is well suited for geologic mapping of this rock suite using remote sensing, especially using data from the satellite-borne advanced Space borne Thermal Emission and Reflection Radiometer (ASTER) imaging system which was designed for mapping mineral information. In this study, data processing methods like Method Minimum noise fraction (MNF), Feature Oriented Principal Components Selection (FPCS), Band Ratios (BR) and Optimum Index Factor (OIF) were used to process ASTER data to optimize the mapping of ophiolite rock types. For example, a simple color composites of OIF (Red: B3, Green: B4, and Blue: B8) and Band ratios (e.g. Red: (B2 + B4)/B3, Green: (B5 + B7)/B6, Blue: (B7 + B9)/B8) were useful for discriminating serpentinite, meta-basalt and granite rock types. It is concluded here that proposed ASTER data has the potential for mapping similar ophiolites elsewhere using the global archive of ASTER imagery.展开更多
The ASTER (Advanced Space-borne Thermal Emission and Reflection radiometer) data, including all the 3 parts: VNIR (Visible and Near-Infrared), SWIR (Short Wave Infrared), TIR (Thermal Infrared), were applied for extra...The ASTER (Advanced Space-borne Thermal Emission and Reflection radiometer) data, including all the 3 parts: VNIR (Visible and Near-Infrared), SWIR (Short Wave Infrared), TIR (Thermal Infrared), were applied for extraction of mineral deposits, such as the Ni-Cu deposit in eastern Tianshan, the gypsum in western Tianshan, and the borax in Tibetan. This paper discusses the extraction methodology using the ASTER remote sensing data and reveals the good extraction results. This paper bravely represents the summary of the main achievement for this field by the scientists in other countries and gives a comparison with the works by others. The new achievements, described in this paper, comprise the extraction of anomalies for Ni-Cu deposit, gypsum, and borax.展开更多
The application of Geographic Information System(GIS)methodologies offers valuable insights into the hydrological behaviour of watersheds through the analysis of their morphometric attributes.This study focuses on the...The application of Geographic Information System(GIS)methodologies offers valuable insights into the hydrological behaviour of watersheds through the analysis of their morphometric attributes.This study focuses on the Goriganga River,a major tributary of the Ganga River system,by conducting a detailed morphometric analysis using Advanced Spaceborne Thermal Emission and Reflection Radiometer(ASTER)imagery with 30 m resolution,alongside survey of India topographic sheets.Thirty-two water-sheds within the river basin were delineated to calculate linear,areal,and relief morphometric parameters,covering a total drainage area of 2,183.11 km^(2).The drainage pattern,primarily dendritic to sub-dendritic,is shaped by the region's topography,geological structure,and precipitation patterns.Classified as a 6th-order basin,the drainage density ranges from 1.21 km/km^(2)to 1.96 km/km^(2),underlining the significant influence of the regional physiography and lithological composition on the stream ordering.Relief analysis suggests the basin is in an early developmental stage,characterised by varying slope gradients and a low to moder-ate risk of soil erosion.The basin's hydrogeology is complex,with aquifer distribution primarily governed by lithological factors.Limestone,due to its high permeability and karst features,forms the principal aquifer,although it is susceptible to contamination.In contrast,groundwater potential in the Basement Gneissic Complex and Schist regions is limited to structurally controlled zones,while shale acts as an aquitard.The basin's heterogeneous aquifer characteristics emphasize the need for localized groundwater management strategies tailored to specific lithological units.The integration of remote sensing and GIS techniques effectively delineates the basin's morphometric and hydrogeological characteristics,providing critical information for the development of sustainable water resource management strategies.展开更多
This paper briefly reviews the cause of the striping and then develops a tapered (Chebwin & Kaiser) window finite impulse response (FIR) filter and a constrained least squares FIR filter by reason of the striping ...This paper briefly reviews the cause of the striping and then develops a tapered (Chebwin & Kaiser) window finite impulse response (FIR) filter and a constrained least squares FIR filter by reason of the striping of ASTER satellite data . Both filters minimize the stripes in the visible data and simultaneously minimize any distortion in the filtered data. Finally, the results obtained by using these new filtering methods are quantitatively compared with those produced by other destriping methods.展开更多
Digital elevation model (DEM) is the most popular product for three-dimensional (3D) digital representation of bare Earth surface and can be produced by many techniques with different characteristics and ground sa...Digital elevation model (DEM) is the most popular product for three-dimensional (3D) digital representation of bare Earth surface and can be produced by many techniques with different characteristics and ground sampling distances (GSD). Space-borne opti- cal and synthetic aperture radar (SAR) imaging are two of the most preferred and modern techniques for DEM generation. Using them, global DEMs that cover almost entire Earth are produced with low cost and time saving processing. In this study, we aimed to assess the Satellite pour robservation de la Terre-5 (SPOT-5), High Resolution Stereoscopic (HRS), the Advanced Space-borne Thermal Emission and Reflection Radiometer (ASTER), and the Shuttle Radar Topography Mission (SRTM) C-band global DEMs, produced with space-borne optical and SAR imaging. For the assessment, a reference DEM derived from 1 : 1000 scaled digital photogrammetric maps was used. The study is performed in 100 km2 study area in Istanbul including various land classes such as open land, forest, built-up land, scrub and rough terrain obtained from Landsat data. The analyses were realized considering three vertical accuracy types as fundamental, supplemental, and consolidated, defined by national digital elevation program (NDEP) of USA. The results showed that, vertical accuracy of SRTM C-band DEM is better than optical models in all three accuracy types despite having the largest grid spacing. The result of SPOT-5 HRS DEM is very close by SRTM and superior in comparison with ASTER models.展开更多
基金supported by National Geoscience Database and Geological Survey of Iran
文摘The purpose of this study is to evaluate the Spectral Angle Mapper (SAM) classification method for determining the optimum threshold (maximum spectral angle) to unveil the hydrothermal mineral assemblages related to mineral deposits. The study area indicates good potential for Cu-Au porphyry, epithermal gold deposits and hydrothermal alteration well developed in arid and semiarid climates, which makes this region significant for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) image processing analysis. Given that achieving an acceptable mineral mapping requires knowing the alteration patterns, petrochemistry and petrogenesis of the igneous rocks while considering the effect of weathering, overprinting of supergene alteration, overprinting of hypogene alteration and host rock spectral mixing, SAM classification was implemented for argillic, sericitic, propylitic, alunitization, silicification and iron oxide zones of six previously known mineral deposits: Maherabad, a Cu-Au porphyry system; Sheikhabad, an upper part of Cu-Au porphyry system; Khoonik, an Intrusion related Au system; Barmazid, a low sulfidation epithermal system; Khopik, a Cu-Au porphyry system; and Hanish, an epithermal Au system. Thus, the investigation showed that although the whole alteration zones are affected by mixing, it is also possible to produce a favorable hydrothermal mineral map by such complementary data as petrology, petrochemistry and alteration patterns.
文摘遥感卫星的多光谱数据应用于找矿已取得显著成效,2004年7月中国卫星地面站开始提供ASTER(Advanced Space-borne Thermal Emission and Reflection Radiometer,高级星载热发射反照辐射计)数据,因涵盖波长范围宽[VNIR(Visible and Near Infra-red)、SWIR(Short wave-length Infra-red)、TIR(Thermal Infra-red)]、波段多(14个波段)、性价比合理等因素,ASTER数据的研究迅速发展。长久以来,对覆盖区进行蚀变遥感异常信息提取一直是遥感找矿的关注点之一。笔者等利用ASTER数据对浅覆盖区——包古图斑岩铜矿的Ⅱ号、Ⅴ号斑岩体进行蚀变遥感异常提取,提取的蚀变异常与野外地质情况吻合性好。分别提取了光谱特征谱带差异明显的2组蚀变矿物的异常信息:第一组是蒙脱石、埃洛石、伊利石与绢云母;第二组是方解石、黑云母与绿泥石。提出了需要进一步工作的异常靶区。
基金supported by the National Key Research and Development Program (Grand No. 2016YFC0503506)the National Natural Science Foundation of China (Grand No. 41430861)
文摘The topographical suitability assessment of human settlements(SAHS) creates a solid foundation for regional population distribution and socio-economic development. Local elevation range(LER) is an important factor that can be used to assess the suitability of different terrains for sustaining human settlements. However, current digital elevation model(DEM)-based LER products suffer from some challenges typically because of their subjectively selected neighborhood scales and coarser spatial resolution. In this study, we initially determined the optimal statistical window and then calculated the appropriate LER with the finer resolution data of the Advanced Spaceborne Thermal Emission and Reflection Radiometer Global DEM(ASTER GDEM) products for China. Then, the appropriate LER was used to evaluate the topographical SAHS and its correlations with the national gridded population distribution(1 km × 1 km) in 2010. The results show that the optimal statistical window for calculating a 1 arc-second(about 30 m) resolution GDEM LER for China can be determined using a 51 × 51 grid unit(width × height) within a rectangular neighborhood, corresponding to an area of about 2.34 km^2. Secondly, the LER values in the southern and western China were greater than those of the north and east, showing a trend which consistently reflects the general spatial features of landforms. Finally, the relationship between GDEM LER and population density was highly correlated with the R^2 value of 0.81. It showed that 85.22% of the Chinese population was located in areas where the LER is lower than 500 m. The topographically suitable area within China decreased from the southeastern coastal zone towards the northwestern inland areas due to transition from plains and basins to plateaus and mountains. The total area of moderate to high suitable level was 423.84 × 10~4 km^2, or 44.15% of the total land area, with 88.17% of the national population. Our study demonstrates the usefulness of appropriate LER in evaluating the topographical SAHS as well as its significant impact on population distribution.
文摘The Mesozoic ophiolitic Mélange, north of Nain in the Central-East Iran Microplate (CEIM) comprises serpentinized ultramafic rocks, harzburgites, dunite, gabbro, peridotite, pelagic limestone and other carbonate rocks. The excellent and vast exposure of this desert region is well suited for geologic mapping of this rock suite using remote sensing, especially using data from the satellite-borne advanced Space borne Thermal Emission and Reflection Radiometer (ASTER) imaging system which was designed for mapping mineral information. In this study, data processing methods like Method Minimum noise fraction (MNF), Feature Oriented Principal Components Selection (FPCS), Band Ratios (BR) and Optimum Index Factor (OIF) were used to process ASTER data to optimize the mapping of ophiolite rock types. For example, a simple color composites of OIF (Red: B3, Green: B4, and Blue: B8) and Band ratios (e.g. Red: (B2 + B4)/B3, Green: (B5 + B7)/B6, Blue: (B7 + B9)/B8) were useful for discriminating serpentinite, meta-basalt and granite rock types. It is concluded here that proposed ASTER data has the potential for mapping similar ophiolites elsewhere using the global archive of ASTER imagery.
文摘The ASTER (Advanced Space-borne Thermal Emission and Reflection radiometer) data, including all the 3 parts: VNIR (Visible and Near-Infrared), SWIR (Short Wave Infrared), TIR (Thermal Infrared), were applied for extraction of mineral deposits, such as the Ni-Cu deposit in eastern Tianshan, the gypsum in western Tianshan, and the borax in Tibetan. This paper discusses the extraction methodology using the ASTER remote sensing data and reveals the good extraction results. This paper bravely represents the summary of the main achievement for this field by the scientists in other countries and gives a comparison with the works by others. The new achievements, described in this paper, comprise the extraction of anomalies for Ni-Cu deposit, gypsum, and borax.
文摘The application of Geographic Information System(GIS)methodologies offers valuable insights into the hydrological behaviour of watersheds through the analysis of their morphometric attributes.This study focuses on the Goriganga River,a major tributary of the Ganga River system,by conducting a detailed morphometric analysis using Advanced Spaceborne Thermal Emission and Reflection Radiometer(ASTER)imagery with 30 m resolution,alongside survey of India topographic sheets.Thirty-two water-sheds within the river basin were delineated to calculate linear,areal,and relief morphometric parameters,covering a total drainage area of 2,183.11 km^(2).The drainage pattern,primarily dendritic to sub-dendritic,is shaped by the region's topography,geological structure,and precipitation patterns.Classified as a 6th-order basin,the drainage density ranges from 1.21 km/km^(2)to 1.96 km/km^(2),underlining the significant influence of the regional physiography and lithological composition on the stream ordering.Relief analysis suggests the basin is in an early developmental stage,characterised by varying slope gradients and a low to moder-ate risk of soil erosion.The basin's hydrogeology is complex,with aquifer distribution primarily governed by lithological factors.Limestone,due to its high permeability and karst features,forms the principal aquifer,although it is susceptible to contamination.In contrast,groundwater potential in the Basement Gneissic Complex and Schist regions is limited to structurally controlled zones,while shale acts as an aquitard.The basin's heterogeneous aquifer characteristics emphasize the need for localized groundwater management strategies tailored to specific lithological units.The integration of remote sensing and GIS techniques effectively delineates the basin's morphometric and hydrogeological characteristics,providing critical information for the development of sustainable water resource management strategies.
文摘This paper briefly reviews the cause of the striping and then develops a tapered (Chebwin & Kaiser) window finite impulse response (FIR) filter and a constrained least squares FIR filter by reason of the striping of ASTER satellite data . Both filters minimize the stripes in the visible data and simultaneously minimize any distortion in the filtered data. Finally, the results obtained by using these new filtering methods are quantitatively compared with those produced by other destriping methods.
基金Under the auspices of Scientific Research Project Coordinatorship of Yildiz Technical University,Turkey(No.20100503KAP01)
文摘Digital elevation model (DEM) is the most popular product for three-dimensional (3D) digital representation of bare Earth surface and can be produced by many techniques with different characteristics and ground sampling distances (GSD). Space-borne opti- cal and synthetic aperture radar (SAR) imaging are two of the most preferred and modern techniques for DEM generation. Using them, global DEMs that cover almost entire Earth are produced with low cost and time saving processing. In this study, we aimed to assess the Satellite pour robservation de la Terre-5 (SPOT-5), High Resolution Stereoscopic (HRS), the Advanced Space-borne Thermal Emission and Reflection Radiometer (ASTER), and the Shuttle Radar Topography Mission (SRTM) C-band global DEMs, produced with space-borne optical and SAR imaging. For the assessment, a reference DEM derived from 1 : 1000 scaled digital photogrammetric maps was used. The study is performed in 100 km2 study area in Istanbul including various land classes such as open land, forest, built-up land, scrub and rough terrain obtained from Landsat data. The analyses were realized considering three vertical accuracy types as fundamental, supplemental, and consolidated, defined by national digital elevation program (NDEP) of USA. The results showed that, vertical accuracy of SRTM C-band DEM is better than optical models in all three accuracy types despite having the largest grid spacing. The result of SPOT-5 HRS DEM is very close by SRTM and superior in comparison with ASTER models.