Range Doppler velocities derived from the Envisat advanced synthetic aperture radar(ASAR) wide swath images are analyzed and assessed against the numerically simulated surface current fields derived from the finite ...Range Doppler velocities derived from the Envisat advanced synthetic aperture radar(ASAR) wide swath images are analyzed and assessed against the numerically simulated surface current fields derived from the finite volume coastal ocean model(FVCOM) for the Changjiang Estuary. Comparisons with the FVCOM simulations show that the European Space Agency(ESA) Envisat ASAR based Doppler shift anomaly retrievals have the capability to capture quantitative information of the surface currents in the Changjiang Estuary. The uncertainty analysis of the ASAR range Doppler velocity estimates are discussed with regard to the azimuthal and range bias corrections, radar incidence angles, inaccuracy in the wind field corrections and the presence of rain cells.The corrected range Doppler velocities for the Changjiang Estuary area are highly valuable as they exhibit quantitative expressions related to the multiscale upper layer dynamics and surface current variability around the East China Sea, including the Changjiang Estuary.展开更多
The method of moving target detection based on subimage cancellation for single-antenna airborne SAR is presented. First the subimage is obtained through frequency processing is pointed out. The imaging difference of ...The method of moving target detection based on subimage cancellation for single-antenna airborne SAR is presented. First the subimage is obtained through frequency processing is pointed out. The imaging difference of a stationary objects and moving object in the subimage based on the frequency division is analyzed from the fundamental principle. Then the developed method combines the shear averaging algorithm to focus on the moving target in the subimage, after the clutter suppression and the focusing position in each subimage is obtained. Next the observation model and the relative movement of the moving targets between the subimages estimate the moving targets. The theoretical analysis and simulation results demonstrate that the method is effective and can not only detect the moving targets, but also estimate their motion parameters precisely.展开更多
Oil spills pose a major threat to ocean ecosystems and their health. Synthetic aperture radar(SAR) sensors can detect oil spills on the sea surface. These oil spills appear as dark spots in SAR images. However, dark...Oil spills pose a major threat to ocean ecosystems and their health. Synthetic aperture radar(SAR) sensors can detect oil spills on the sea surface. These oil spills appear as dark spots in SAR images. However, dark formations can be caused by a number of phenomena. It is aimed to distinguishing oil spills or look-alike objects. A novel method based on a bidimensional empirical mode decomposition is proposed. The selected dark formations are first decomposed into several bidimensional intrinsic mode functions and the residue. Subsequently, 64 dimension feature sets are calculated using the Hilbert spectral analysis and five new features are extracted with a relief algorithm. Mahalanobis distances are then used for classification. Three data sets containing oil spills or look-alikes are used to test the accuracy rate of the method. The accuracy rate is more than 90%. The experimental results demonstrate that the novel method can detect oil spills validly and accurately.展开更多
For ballistic mid-course targets,in addition to constant orbital motion,the target or any structure on the target undergoes micro-motion dynamics,such as spin,precession and tumbling.The micro-motion characteristics o...For ballistic mid-course targets,in addition to constant orbital motion,the target or any structure on the target undergoes micro-motion dynamics,such as spin,precession and tumbling.The micro-motion characteristics of the ballistic mid-course targets were discussed.The target motion model and inverse synthetic aperture radar(ISAR) imaging model for this kind of targets were built.Then,the influence of micro-motion on ISAR imaging based on the established imaging model was presented.The computer simulation to get mid-course target echoes from static darkroom electromagnetic scattering data based on the established target motion model was realized.The imaging results of computer simulation show the validity of ISAR imaging analysis for micro-motion targets.展开更多
Target modeling and scattering function calculating are important prerequisites and groundwork for the synthetic aperture radar(SAR) imaging simulation.According to the difficult problems that normal methods cannot ...Target modeling and scattering function calculating are important prerequisites and groundwork for the synthetic aperture radar(SAR) imaging simulation.According to the difficult problems that normal methods cannot calculate the scattering function of electrically large object under the condition to wideband,an effective method of improved equivalent edge currents is presented and applied to SAR imaging simulation for the first time.This method improves calculating velocity and has relatively high precision.The concrete steps of applying the method are given.By way of the simulation experiment,the effectiveness of the method is verified.展开更多
Not confined to a certain point,such as waveform,this paper systematically studies the low-intercept radio frequency(RF)stealth design of synthetic aperture radar(SAR)from the system level.The study is carried out fro...Not confined to a certain point,such as waveform,this paper systematically studies the low-intercept radio frequency(RF)stealth design of synthetic aperture radar(SAR)from the system level.The study is carried out from two levels.In the first level,the maximum low-intercept range equation of the conventional SAR system is deduced firstly,and then the maximum low-intercept range equation of the multiple-input multiple-output SAR system is deduced.In the second level,the waveform design and imaging method of the low-intercept RF SAR system are given and verified by simulation.Finally,the main technical characteristics of the lowintercept RF stealth SAR system are given to guide the design of low-intercept RF stealth SAR system.展开更多
The scattering points in a plasma sheath characterized with coupled velocities can cause pulse compression mismatching,which results in displacement and energy diffusion in the onedimension range profile.To solve this...The scattering points in a plasma sheath characterized with coupled velocities can cause pulse compression mismatching,which results in displacement and energy diffusion in the onedimension range profile.To solve this problem,we deduce the echo model of the plasma-sheathenveloped reentry object.By estimating the coupled velocities,we propose a compensation method to correct the defocus of an inverse synthetic aperture radar(ISAR)image in range dimension to improve the quality of the ISAR images.The simulation results suggest that the echoes from different regions of the surface of the reentry object have various coupling velocities,and the higher the coupled velocity,the more serious the displacement and energy diffusion in the range dimension.Our proposed method can correct the range dimension aberration.Two measurement metrics were used to evaluate the improvement of the compensation method.展开更多
Automatically detecting Ulva prolifera(U.prolifera)in rainy and cloudy weather using remote sensing imagery has been a long-standing problem.Here,we address this challenge by combining high-resolution Synthetic Apertu...Automatically detecting Ulva prolifera(U.prolifera)in rainy and cloudy weather using remote sensing imagery has been a long-standing problem.Here,we address this challenge by combining high-resolution Synthetic Aperture Radar(SAR)imagery with the machine learning,and detect the U.prolifera of the South Yellow Sea of China(SYS)in 2021.The findings indicate that the Random Forest model can accurately and robustly detect U.prolifera,even in the presence of complex ocean backgrounds and speckle noise.Visual inspection confirmed that the method successfully identified the majority of pixels containing U.prolifera without misidentify-ing noise pixels or seawater pixels as U.prolifera.Additionally,the method demonstrated consistent performance across different im-ages,with an average Area Under Curve(AUC)of 0.930(+0.028).The analysis yielded an overall accuracy of over 96%,with an aver-age Kappa coefficient of 0.941(+0.038).Compared to the traditional thresholding method,Random Forest model has a lower estima-tion error of 14.81%.Practical application indicates that this method can be used in the detection of unprecedented U.prolifera in 2021 to derive continuous spatiotemporal changes.This study provides a potential new method to detect U.prolifera and enhances our under-standing of macroalgal outbreaks in the marine environment.展开更多
The quality of synthetic aperture radar(SAR)image degrades in the case of multiple imaging projection planes(IPPs)and multiple overlapping ship targets,and then the performance of target classification and recognition...The quality of synthetic aperture radar(SAR)image degrades in the case of multiple imaging projection planes(IPPs)and multiple overlapping ship targets,and then the performance of target classification and recognition can be influenced.For addressing this issue,a method for extracting ship targets with overlaps via the expectation maximization(EM)algorithm is pro-posed.First,the scatterers of ship targets are obtained via the target detection technique.Then,the EM algorithm is applied to extract the scatterers of a single ship target with a single IPP.Afterwards,a novel image amplitude estimation approach is pro-posed,with which the radar image of a single target with a sin-gle IPP can be generated.The proposed method can accom-plish IPP selection and targets separation in the image domain,which can improve the image quality and reserve the target information most possibly.Results of simulated and real mea-sured data demonstrate the effectiveness of the proposed method.展开更多
A method and procedure is presented to reconstruct three-dimensional(3D) positions of scattering centers from multiple synthetic aperture radar(SAR) images. Firstly, two-dimensional(2D) attribute scattering centers of...A method and procedure is presented to reconstruct three-dimensional(3D) positions of scattering centers from multiple synthetic aperture radar(SAR) images. Firstly, two-dimensional(2D) attribute scattering centers of targets are extracted from 2D SAR images. Secondly, similarity measure is developed based on 2D attributed scatter centers' location, type, and radargrammetry principle between multiple SAR images. By this similarity, we can associate 2D scatter centers and then obtain candidate 3D scattering centers. Thirdly, these candidate scattering centers are clustered in 3D space to reconstruct final 3D positions. Compared with presented methods, the proposed method has a capability of describing distributed scattering center, reduces false and missing 3D scattering centers, and has fewer restrictionson modeling data. Finally, results of experiments have demonstrated the effectiveness of the proposed method.展开更多
SAR images commonly suffer fromspeckle noise,posing a significant challenge in their analysis and interpretation.Existing convolutional neural network(CNN)based despeckling methods have shown great performance in remo...SAR images commonly suffer fromspeckle noise,posing a significant challenge in their analysis and interpretation.Existing convolutional neural network(CNN)based despeckling methods have shown great performance in removing speckle noise.However,these CNN-basedmethods have a fewlimitations.They do not decouple complex background information in amulti-resolutionmanner.Moreover,they have deep network structures thatmay result in many parameters,limiting their applicability tomobile devices.Furthermore,extracting key speckle information in the presence of complex background is also a major problem with SAR.The proposed study addresses these limitations by introducing a lightweight pyramid and attention-based despeckling(PAN-Despeck)network.The primary objective is to enhance image quality and enable improved information interpretation,particularly on mobile devices and scenarios involving complex backgrounds.The PAN-Despeck network leverages domainspecific knowledge and integrates Gaussian Laplacian image pyramid decomposition for multi-resolution image analysis.By utilizing this approach,complex background information can be effectively decoupled,leading to enhanced despeckling performance.Furthermore,the attention mechanism selectively focuses on key speckle features and facilitates complex background removal.The network incorporates recursive and residual blocks to ensure computational efficiency and accelerate training speed,making it lightweight while maintaining high performance.Through comprehensive evaluations,it is demonstrated that PAN-Despeck outperforms existing image restoration methods.With an impressive average peak signal-to-noise ratio(PSNR)of 28.355114 and a remarkable structural similarity index(SSIM)of 0.905467,it demonstrates exceptional performance in effectively reducing speckle noise in SAR images.The source code for the PAN-DeSpeck network is available on GitHub.展开更多
Based on dual-frequencies dual-apertures spaceborne SAR (Synthetic Aperture Radar), a new SAR system with four receiving channels and two operation modes is presented in this paper, SAR imaging and Moving Target Ind...Based on dual-frequencies dual-apertures spaceborne SAR (Synthetic Aperture Radar), a new SAR system with four receiving channels and two operation modes is presented in this paper, SAR imaging and Moving Target Indication (MTI) are studied in this system. High resolution imaging with wide swath is implemented by the Mode Ⅰ, and MTI is completed by the Mode Ⅱ. High azimuth resolution is achieved by the Displaced Phase Center (DPC) multibeam technique. And the Coherent Accumulation (CA) method, which combines dual channels data of different carrier frequency, is used to enhance the range resolution. For the data of different carrier frequency, the two aperture interferometric processing is executed to implement clutter cancellation, respectively. And the couple of clutter suppressed data are employed to implement Dual Carrier Frequency Conjugate Processing (DCFCP), then both slow and fast moving targets detection can be completed, followed by moving target imaging. The simulation results show the validity of the signal processing method of this new SAR system.展开更多
The airborne cross-track three apertures MilliMeter Wave (MMW) Synthetic Aperture Radar (SAR) side-looking three-Dimensional (3D) imaging is investigated in this paper. Three apertures are distributed along the cross-...The airborne cross-track three apertures MilliMeter Wave (MMW) Synthetic Aperture Radar (SAR) side-looking three-Dimensional (3D) imaging is investigated in this paper. Three apertures are distributed along the cross-track direction, and three virtual phase centers will be obtained through one-input and three-output. These three virtual phase centers form a sparse array which can be used to obtain the cross-track resolution. Because the cross-track array is short, the cross-track resolution is low. When the system works in side-looking mode, the cross-track resolution and height resolution will be coupling, and the low cross-track resolution will partly be transformed into the height uncertainty. The beam pattern of the real aperture is used as a weight to improve the Peak to SideLobe Ratio (PSLR) and Integrated SideLobe Ratio (ISLR) of the cross-track sparse array. In order to suppress the high cross-track sidelobes, a weighting preprocessing method is proposed. The 3D images of a point target and a simulation scene are achieved to verify the feasibility of the proposed method. And the imaging result of the real data obtained by the cross-track three-baseline MMW InSAR prototype is presented as a beneficial attempt.展开更多
We propose a novel statistical distribution texton(s-texton) feature for synthetic aperture radar(SAR) image classification. Motivated by the traditional texton feature, the framework of texture analysis, and the impo...We propose a novel statistical distribution texton(s-texton) feature for synthetic aperture radar(SAR) image classification. Motivated by the traditional texton feature, the framework of texture analysis, and the importance of statistical distribution in SAR images, the s-texton feature is developed based on the idea that parameter estimation of the statistical distribution can replace the filtering operation in the traditional texture analysis of SAR images. In the process of extracting the s-texton feature, several strategies are adopted, including pre-processing, spatial gridding, parameter estimation, texton clustering, and histogram statistics. Experimental results on Terra SAR data demonstrate the effectiveness of the proposed s-texton feature.展开更多
The traditional synthetic aperture radar(SAR) image recognition techniques focus on the electro magnetic (EM) scattering centers, ignoring the important role of the shadow information on the SAR image recognition....The traditional synthetic aperture radar(SAR) image recognition techniques focus on the electro magnetic (EM) scattering centers, ignoring the important role of the shadow information on the SAR image recognition. It is difficult to classify targets by the shadow information independently, because the shadow shape is dependent on the radar aspect angle, the depression angle and the resolution. Moreover, the shadow shapes of different targets are similar. When the multiple SAR images of one target from different aspects are available, the performance of the target recognition can be improved. Aimed at the problem, a multi-aspect SAR image recognition technique based on the shadow information is developed. It extracts shadow profiles from SAR images, and takes chain codes as the feature vectors of targets. Then, feature vectors on multiple aspects of the same target are combined with feature sequences, and the hidden Markov model (HMM) is applied to the feature sequences for the target recognition. The simulation result shows the effectiveness of the method.展开更多
A multiscale information measure (MIM), calculable from per-pixel wavelet coefficients, but relying on global statistics of synthetic aperture radar (SAR) image, is proposed. It fully exploits the variations in sp...A multiscale information measure (MIM), calculable from per-pixel wavelet coefficients, but relying on global statistics of synthetic aperture radar (SAR) image, is proposed. It fully exploits the variations in speckle pattern when the image resolution varies from course to fine, thus it can capture the intrinsic texture of the scene backscatter and the texture due to speckle simultaneously. Graph spectral segmen- tation methods based on MIM and the usual similarity measure are carried out on two real SAR images. Experimental results show that MIM can characterize texture information of SAR image more effectively than the commonly used similarity measure.展开更多
In order to suppress the speckle appearing in synthesis aperture radar (SAR) images, a novel speckle reduction method based on wavelet domain hidden Markov tree (HMT) was proposed. First, the image was logarithmic tra...In order to suppress the speckle appearing in synthesis aperture radar (SAR) images, a novel speckle reduction method based on wavelet domain hidden Markov tree (HMT) was proposed. First, the image was logarithmic transformed to change the statistical property of the speckles. Then an HMT was constructed in the correspondent wavelet domain. Based on this model, the image signal was restored by maximum likelihood estimation and speckle noise was suppressed. Simulating SAR images had shown that the performance of the filter is satisfactory for both speckle smoothing and edges presentation, and for generating visually natural images as well.展开更多
The convergence performance of the minimum entropy auto-focusing(MEA) algorithm for inverse synthetic aperture radar(ISAR) imaging is analyzed by simulation. The results show that a local optimal solution problem ...The convergence performance of the minimum entropy auto-focusing(MEA) algorithm for inverse synthetic aperture radar(ISAR) imaging is analyzed by simulation. The results show that a local optimal solution problem exists in the MEA algorithm. The cost function of the MEA algorithm is not a downward-convex function of multidimensional phases to be compensated. Only when the initial values of the compensated phases are chosen to be near the global minimal point of the entropy function, the MEA algorithm can converge to a global optimal solution. To study the optimal solution problem of the MEA algorithm, a new scheme of entropy function optimization for radar imaging is presented. First, the initial values of the compensated phases are estimated by using the modified Doppler centroid tracking (DCT)algorithm. Since these values are obtained according to the maximum likelihood (ML) principle, the initial phases can be located near the optimal solution values. Then, a fast MEA algorithm is used for the local searching process and the global optimal solution can be obtained. The simulation results show that this scheme can realize the global optimization of the MEA algorithm and can avoid the selection and adjustment of parameters such as iteration step lengths, threshold values, etc.展开更多
Considering the joint effects of various factors such as temporal baseline, spatial baseline, thermal noise, the difference of Doppler centroid frequency and the error of data processing on the interference correlatio...Considering the joint effects of various factors such as temporal baseline, spatial baseline, thermal noise, the difference of Doppler centroid frequency and the error of data processing on the interference correlation, an optimum selection method of common master images for ground deformation monitoring based on the permanent scatterer and differential SAR interferometry (PS-DInSAR) technique is proposed, in which the joint correlation coeficient is used as the evaluation function. The principle and realization method of PS-DInSAR technology is introduced, the factors affecting the DInSAR correlation are analysed, and the joint correlation function model and its solution are presented. Finally an experiment for the optimum selection of common master images is performed by using 25 SAR images over Shanghai taken by the ERS-1/2 as test data. The results indicate that the optimum selection method for PS-DInSAR common master images is effective and reliable.展开更多
A new method for estimating significant wave height(SWH) from advanced synthetic aperture radar(ASAR) wave mode data based on a support vector machine(SVM) regression model is presented. The model is established...A new method for estimating significant wave height(SWH) from advanced synthetic aperture radar(ASAR) wave mode data based on a support vector machine(SVM) regression model is presented. The model is established based on a nonlinear relationship between σ0, the variance of the normalized SAR image, SAR image spectrum spectral decomposition parameters and ocean wave SWH. The feature parameters of the SAR images are the input parameters of the SVM regression model, and the SWH provided by the European Centre for Medium-range Weather Forecasts(ECMWF) is the output parameter. On the basis of ASAR matching data set, a particle swarm optimization(PSO) algorithm is used to optimize the input kernel parameters of the SVM regression model and to establish the SVM model. The SWH estimation results yielded by this model are compared with the ECMWF reanalysis data and the buoy data. The RMSE values of the SWH are 0.34 and 0.48 m, and the correlation coefficient is 0.94 and 0.81, respectively. The results show that the SVM regression model is an effective method for estimating the SWH from the SAR data. The advantage of this model is that SAR data may serve as an independent data source for retrieving the SWH, which can avoid the complicated solution process associated with wave spectra.展开更多
基金The National Basic Research Program(973 Program)of China under contract No.2010CB951204European Space Agency-Ministry of Science and Technology of the People’s Republic of China Dragon 3 Cooperation Programme under contract No.10593+1 种基金the State Key Laboratory of Estuarine and Coastal Research,East China Normal University of China under contract No.SKLEC-2012KYYW02the 111 Project under contract No.B08022
文摘Range Doppler velocities derived from the Envisat advanced synthetic aperture radar(ASAR) wide swath images are analyzed and assessed against the numerically simulated surface current fields derived from the finite volume coastal ocean model(FVCOM) for the Changjiang Estuary. Comparisons with the FVCOM simulations show that the European Space Agency(ESA) Envisat ASAR based Doppler shift anomaly retrievals have the capability to capture quantitative information of the surface currents in the Changjiang Estuary. The uncertainty analysis of the ASAR range Doppler velocity estimates are discussed with regard to the azimuthal and range bias corrections, radar incidence angles, inaccuracy in the wind field corrections and the presence of rain cells.The corrected range Doppler velocities for the Changjiang Estuary area are highly valuable as they exhibit quantitative expressions related to the multiscale upper layer dynamics and surface current variability around the East China Sea, including the Changjiang Estuary.
文摘The method of moving target detection based on subimage cancellation for single-antenna airborne SAR is presented. First the subimage is obtained through frequency processing is pointed out. The imaging difference of a stationary objects and moving object in the subimage based on the frequency division is analyzed from the fundamental principle. Then the developed method combines the shear averaging algorithm to focus on the moving target in the subimage, after the clutter suppression and the focusing position in each subimage is obtained. Next the observation model and the relative movement of the moving targets between the subimages estimate the moving targets. The theoretical analysis and simulation results demonstrate that the method is effective and can not only detect the moving targets, but also estimate their motion parameters precisely.
基金The National Science and Technology Support Project under contract No.2014BAB12B02the Natural Science Foundation of Liaoning Province under contract No.201602042
文摘Oil spills pose a major threat to ocean ecosystems and their health. Synthetic aperture radar(SAR) sensors can detect oil spills on the sea surface. These oil spills appear as dark spots in SAR images. However, dark formations can be caused by a number of phenomena. It is aimed to distinguishing oil spills or look-alike objects. A novel method based on a bidimensional empirical mode decomposition is proposed. The selected dark formations are first decomposed into several bidimensional intrinsic mode functions and the residue. Subsequently, 64 dimension feature sets are calculated using the Hilbert spectral analysis and five new features are extracted with a relief algorithm. Mahalanobis distances are then used for classification. Three data sets containing oil spills or look-alikes are used to test the accuracy rate of the method. The accuracy rate is more than 90%. The experimental results demonstrate that the novel method can detect oil spills validly and accurately.
基金Project(61360020102) supported by the National Basic Research Development Program of China
文摘For ballistic mid-course targets,in addition to constant orbital motion,the target or any structure on the target undergoes micro-motion dynamics,such as spin,precession and tumbling.The micro-motion characteristics of the ballistic mid-course targets were discussed.The target motion model and inverse synthetic aperture radar(ISAR) imaging model for this kind of targets were built.Then,the influence of micro-motion on ISAR imaging based on the established imaging model was presented.The computer simulation to get mid-course target echoes from static darkroom electromagnetic scattering data based on the established target motion model was realized.The imaging results of computer simulation show the validity of ISAR imaging analysis for micro-motion targets.
基金supported by the National Natural Science Foundation of China(60871070)
文摘Target modeling and scattering function calculating are important prerequisites and groundwork for the synthetic aperture radar(SAR) imaging simulation.According to the difficult problems that normal methods cannot calculate the scattering function of electrically large object under the condition to wideband,an effective method of improved equivalent edge currents is presented and applied to SAR imaging simulation for the first time.This method improves calculating velocity and has relatively high precision.The concrete steps of applying the method are given.By way of the simulation experiment,the effectiveness of the method is verified.
基金supported by the National Key R&D Program of China(2017YFC1405600)the Fundamental Research Funds for the Central Universities(JB180213)
文摘Not confined to a certain point,such as waveform,this paper systematically studies the low-intercept radio frequency(RF)stealth design of synthetic aperture radar(SAR)from the system level.The study is carried out from two levels.In the first level,the maximum low-intercept range equation of the conventional SAR system is deduced firstly,and then the maximum low-intercept range equation of the multiple-input multiple-output SAR system is deduced.In the second level,the waveform design and imaging method of the low-intercept RF SAR system are given and verified by simulation.Finally,the main technical characteristics of the lowintercept RF stealth SAR system are given to guide the design of low-intercept RF stealth SAR system.
基金supported by National Natural Science Foundation of China(No.61971330)。
文摘The scattering points in a plasma sheath characterized with coupled velocities can cause pulse compression mismatching,which results in displacement and energy diffusion in the onedimension range profile.To solve this problem,we deduce the echo model of the plasma-sheathenveloped reentry object.By estimating the coupled velocities,we propose a compensation method to correct the defocus of an inverse synthetic aperture radar(ISAR)image in range dimension to improve the quality of the ISAR images.The simulation results suggest that the echoes from different regions of the surface of the reentry object have various coupling velocities,and the higher the coupled velocity,the more serious the displacement and energy diffusion in the range dimension.Our proposed method can correct the range dimension aberration.Two measurement metrics were used to evaluate the improvement of the compensation method.
基金Under the auspices of National Natural Science Foundation of China(No.42071385)National Science and Technology Major Project of High Resolution Earth Observation System(No.79-Y50-G18-9001-22/23)。
文摘Automatically detecting Ulva prolifera(U.prolifera)in rainy and cloudy weather using remote sensing imagery has been a long-standing problem.Here,we address this challenge by combining high-resolution Synthetic Aperture Radar(SAR)imagery with the machine learning,and detect the U.prolifera of the South Yellow Sea of China(SYS)in 2021.The findings indicate that the Random Forest model can accurately and robustly detect U.prolifera,even in the presence of complex ocean backgrounds and speckle noise.Visual inspection confirmed that the method successfully identified the majority of pixels containing U.prolifera without misidentify-ing noise pixels or seawater pixels as U.prolifera.Additionally,the method demonstrated consistent performance across different im-ages,with an average Area Under Curve(AUC)of 0.930(+0.028).The analysis yielded an overall accuracy of over 96%,with an aver-age Kappa coefficient of 0.941(+0.038).Compared to the traditional thresholding method,Random Forest model has a lower estima-tion error of 14.81%.Practical application indicates that this method can be used in the detection of unprecedented U.prolifera in 2021 to derive continuous spatiotemporal changes.This study provides a potential new method to detect U.prolifera and enhances our under-standing of macroalgal outbreaks in the marine environment.
基金This work was supported by the National Science Fund for Distinguished Young Scholars(62325104).
文摘The quality of synthetic aperture radar(SAR)image degrades in the case of multiple imaging projection planes(IPPs)and multiple overlapping ship targets,and then the performance of target classification and recognition can be influenced.For addressing this issue,a method for extracting ship targets with overlaps via the expectation maximization(EM)algorithm is pro-posed.First,the scatterers of ship targets are obtained via the target detection technique.Then,the EM algorithm is applied to extract the scatterers of a single ship target with a single IPP.Afterwards,a novel image amplitude estimation approach is pro-posed,with which the radar image of a single target with a sin-gle IPP can be generated.The proposed method can accom-plish IPP selection and targets separation in the image domain,which can improve the image quality and reserve the target information most possibly.Results of simulated and real mea-sured data demonstrate the effectiveness of the proposed method.
文摘A method and procedure is presented to reconstruct three-dimensional(3D) positions of scattering centers from multiple synthetic aperture radar(SAR) images. Firstly, two-dimensional(2D) attribute scattering centers of targets are extracted from 2D SAR images. Secondly, similarity measure is developed based on 2D attributed scatter centers' location, type, and radargrammetry principle between multiple SAR images. By this similarity, we can associate 2D scatter centers and then obtain candidate 3D scattering centers. Thirdly, these candidate scattering centers are clustered in 3D space to reconstruct final 3D positions. Compared with presented methods, the proposed method has a capability of describing distributed scattering center, reduces false and missing 3D scattering centers, and has fewer restrictionson modeling data. Finally, results of experiments have demonstrated the effectiveness of the proposed method.
文摘SAR images commonly suffer fromspeckle noise,posing a significant challenge in their analysis and interpretation.Existing convolutional neural network(CNN)based despeckling methods have shown great performance in removing speckle noise.However,these CNN-basedmethods have a fewlimitations.They do not decouple complex background information in amulti-resolutionmanner.Moreover,they have deep network structures thatmay result in many parameters,limiting their applicability tomobile devices.Furthermore,extracting key speckle information in the presence of complex background is also a major problem with SAR.The proposed study addresses these limitations by introducing a lightweight pyramid and attention-based despeckling(PAN-Despeck)network.The primary objective is to enhance image quality and enable improved information interpretation,particularly on mobile devices and scenarios involving complex backgrounds.The PAN-Despeck network leverages domainspecific knowledge and integrates Gaussian Laplacian image pyramid decomposition for multi-resolution image analysis.By utilizing this approach,complex background information can be effectively decoupled,leading to enhanced despeckling performance.Furthermore,the attention mechanism selectively focuses on key speckle features and facilitates complex background removal.The network incorporates recursive and residual blocks to ensure computational efficiency and accelerate training speed,making it lightweight while maintaining high performance.Through comprehensive evaluations,it is demonstrated that PAN-Despeck outperforms existing image restoration methods.With an impressive average peak signal-to-noise ratio(PSNR)of 28.355114 and a remarkable structural similarity index(SSIM)of 0.905467,it demonstrates exceptional performance in effectively reducing speckle noise in SAR images.The source code for the PAN-DeSpeck network is available on GitHub.
基金Supported by the National Natural Science Foundation of China (NSFC) (No.60772103)China National Key Laboratory of Microwave Imaging Technology Foundation (No.9140C1903050804)
文摘Based on dual-frequencies dual-apertures spaceborne SAR (Synthetic Aperture Radar), a new SAR system with four receiving channels and two operation modes is presented in this paper, SAR imaging and Moving Target Indication (MTI) are studied in this system. High resolution imaging with wide swath is implemented by the Mode Ⅰ, and MTI is completed by the Mode Ⅱ. High azimuth resolution is achieved by the Displaced Phase Center (DPC) multibeam technique. And the Coherent Accumulation (CA) method, which combines dual channels data of different carrier frequency, is used to enhance the range resolution. For the data of different carrier frequency, the two aperture interferometric processing is executed to implement clutter cancellation, respectively. And the couple of clutter suppressed data are employed to implement Dual Carrier Frequency Conjugate Processing (DCFCP), then both slow and fast moving targets detection can be completed, followed by moving target imaging. The simulation results show the validity of the signal processing method of this new SAR system.
基金Supported by the National Basic Research Program (973) of China (No. 2009CB72400)
文摘The airborne cross-track three apertures MilliMeter Wave (MMW) Synthetic Aperture Radar (SAR) side-looking three-Dimensional (3D) imaging is investigated in this paper. Three apertures are distributed along the cross-track direction, and three virtual phase centers will be obtained through one-input and three-output. These three virtual phase centers form a sparse array which can be used to obtain the cross-track resolution. Because the cross-track array is short, the cross-track resolution is low. When the system works in side-looking mode, the cross-track resolution and height resolution will be coupling, and the low cross-track resolution will partly be transformed into the height uncertainty. The beam pattern of the real aperture is used as a weight to improve the Peak to SideLobe Ratio (PSLR) and Integrated SideLobe Ratio (ISLR) of the cross-track sparse array. In order to suppress the high cross-track sidelobes, a weighting preprocessing method is proposed. The 3D images of a point target and a simulation scene are achieved to verify the feasibility of the proposed method. And the imaging result of the real data obtained by the cross-track three-baseline MMW InSAR prototype is presented as a beneficial attempt.
基金supported by the National Natural Science Foundation of China(Nos.41371342 and 61331016)the National Key Research and Development Program of China(No.2016YFC0803003-01)
文摘We propose a novel statistical distribution texton(s-texton) feature for synthetic aperture radar(SAR) image classification. Motivated by the traditional texton feature, the framework of texture analysis, and the importance of statistical distribution in SAR images, the s-texton feature is developed based on the idea that parameter estimation of the statistical distribution can replace the filtering operation in the traditional texture analysis of SAR images. In the process of extracting the s-texton feature, several strategies are adopted, including pre-processing, spatial gridding, parameter estimation, texton clustering, and histogram statistics. Experimental results on Terra SAR data demonstrate the effectiveness of the proposed s-texton feature.
文摘The traditional synthetic aperture radar(SAR) image recognition techniques focus on the electro magnetic (EM) scattering centers, ignoring the important role of the shadow information on the SAR image recognition. It is difficult to classify targets by the shadow information independently, because the shadow shape is dependent on the radar aspect angle, the depression angle and the resolution. Moreover, the shadow shapes of different targets are similar. When the multiple SAR images of one target from different aspects are available, the performance of the target recognition can be improved. Aimed at the problem, a multi-aspect SAR image recognition technique based on the shadow information is developed. It extracts shadow profiles from SAR images, and takes chain codes as the feature vectors of targets. Then, feature vectors on multiple aspects of the same target are combined with feature sequences, and the hidden Markov model (HMM) is applied to the feature sequences for the target recognition. The simulation result shows the effectiveness of the method.
基金the National Natural Science Foundation of China(No.60375003)the Aeronautics and Astronautics Basal Science Foundation of China(No.03153059).
文摘A multiscale information measure (MIM), calculable from per-pixel wavelet coefficients, but relying on global statistics of synthetic aperture radar (SAR) image, is proposed. It fully exploits the variations in speckle pattern when the image resolution varies from course to fine, thus it can capture the intrinsic texture of the scene backscatter and the texture due to speckle simultaneously. Graph spectral segmen- tation methods based on MIM and the usual similarity measure are carried out on two real SAR images. Experimental results show that MIM can characterize texture information of SAR image more effectively than the commonly used similarity measure.
文摘In order to suppress the speckle appearing in synthesis aperture radar (SAR) images, a novel speckle reduction method based on wavelet domain hidden Markov tree (HMT) was proposed. First, the image was logarithmic transformed to change the statistical property of the speckles. Then an HMT was constructed in the correspondent wavelet domain. Based on this model, the image signal was restored by maximum likelihood estimation and speckle noise was suppressed. Simulating SAR images had shown that the performance of the filter is satisfactory for both speckle smoothing and edges presentation, and for generating visually natural images as well.
基金The Natural Science Foundation of Jiangsu Province(NoBK2008429)Open Research Foundation of State Key Laboratory ofMillimeter Waves of Southeast University(NoK200903)+1 种基金China Postdoctoral Science Foundation(No20080431126)Jiangsu Province Postdoctoral Science Foundation(No2007337)
文摘The convergence performance of the minimum entropy auto-focusing(MEA) algorithm for inverse synthetic aperture radar(ISAR) imaging is analyzed by simulation. The results show that a local optimal solution problem exists in the MEA algorithm. The cost function of the MEA algorithm is not a downward-convex function of multidimensional phases to be compensated. Only when the initial values of the compensated phases are chosen to be near the global minimal point of the entropy function, the MEA algorithm can converge to a global optimal solution. To study the optimal solution problem of the MEA algorithm, a new scheme of entropy function optimization for radar imaging is presented. First, the initial values of the compensated phases are estimated by using the modified Doppler centroid tracking (DCT)algorithm. Since these values are obtained according to the maximum likelihood (ML) principle, the initial phases can be located near the optimal solution values. Then, a fast MEA algorithm is used for the local searching process and the global optimal solution can be obtained. The simulation results show that this scheme can realize the global optimization of the MEA algorithm and can avoid the selection and adjustment of parameters such as iteration step lengths, threshold values, etc.
文摘Considering the joint effects of various factors such as temporal baseline, spatial baseline, thermal noise, the difference of Doppler centroid frequency and the error of data processing on the interference correlation, an optimum selection method of common master images for ground deformation monitoring based on the permanent scatterer and differential SAR interferometry (PS-DInSAR) technique is proposed, in which the joint correlation coeficient is used as the evaluation function. The principle and realization method of PS-DInSAR technology is introduced, the factors affecting the DInSAR correlation are analysed, and the joint correlation function model and its solution are presented. Finally an experiment for the optimum selection of common master images is performed by using 25 SAR images over Shanghai taken by the ERS-1/2 as test data. The results indicate that the optimum selection method for PS-DInSAR common master images is effective and reliable.
基金The National Key Research and Development Program of China under contract Nos 2016YFA0600102 and2016YFC1401007the National Natural Science Youth Foundation of China under contract No.61501130the Natural Science Foundation of China under contract No.41406207
文摘A new method for estimating significant wave height(SWH) from advanced synthetic aperture radar(ASAR) wave mode data based on a support vector machine(SVM) regression model is presented. The model is established based on a nonlinear relationship between σ0, the variance of the normalized SAR image, SAR image spectrum spectral decomposition parameters and ocean wave SWH. The feature parameters of the SAR images are the input parameters of the SVM regression model, and the SWH provided by the European Centre for Medium-range Weather Forecasts(ECMWF) is the output parameter. On the basis of ASAR matching data set, a particle swarm optimization(PSO) algorithm is used to optimize the input kernel parameters of the SVM regression model and to establish the SVM model. The SWH estimation results yielded by this model are compared with the ECMWF reanalysis data and the buoy data. The RMSE values of the SWH are 0.34 and 0.48 m, and the correlation coefficient is 0.94 and 0.81, respectively. The results show that the SVM regression model is an effective method for estimating the SWH from the SAR data. The advantage of this model is that SAR data may serve as an independent data source for retrieving the SWH, which can avoid the complicated solution process associated with wave spectra.