Deep Learning(DL)has revolutionized the field of Artificial Intelligence(Al)in various domains such as computer vision(CV)and natural language processing.However,DL models have limitations including the need for large...Deep Learning(DL)has revolutionized the field of Artificial Intelligence(Al)in various domains such as computer vision(CV)and natural language processing.However,DL models have limitations including the need for large labeled datasets,lack of interpretability and explainability,potential bias and fairness issues,and limitations in common sense reasoning and contextual understanding.On the other side,DL has shown significant potential in construction for safety and quality inspection tasks using CV models.However,current CV approaches may lack spatial context and measurement capabilities,and struggle with complex safety and quality requirements.The integration of Neuro-Symbolic Computing(NSC),an emerging field that combines DL and symbolic reasoning,has been proposed as a potential solution to address these limitations.NSC has the potential to enable more robust,interpretable,and accurate AI systems in construction by harnessing the strengths of DL and symbolic reasoning.The combination of symbolism and connectionism in NSC can lead to more efficient data usage,improved generalization ability,and enhanced interpretability.Further research and experimentation are needed to effectively integrate NSC with large models and advance CV technologies for precise reporting of safety and quality inspection results in construction.展开更多
文摘Deep Learning(DL)has revolutionized the field of Artificial Intelligence(Al)in various domains such as computer vision(CV)and natural language processing.However,DL models have limitations including the need for large labeled datasets,lack of interpretability and explainability,potential bias and fairness issues,and limitations in common sense reasoning and contextual understanding.On the other side,DL has shown significant potential in construction for safety and quality inspection tasks using CV models.However,current CV approaches may lack spatial context and measurement capabilities,and struggle with complex safety and quality requirements.The integration of Neuro-Symbolic Computing(NSC),an emerging field that combines DL and symbolic reasoning,has been proposed as a potential solution to address these limitations.NSC has the potential to enable more robust,interpretable,and accurate AI systems in construction by harnessing the strengths of DL and symbolic reasoning.The combination of symbolism and connectionism in NSC can lead to more efficient data usage,improved generalization ability,and enhanced interpretability.Further research and experimentation are needed to effectively integrate NSC with large models and advance CV technologies for precise reporting of safety and quality inspection results in construction.