The higher-order numerical scheme of nonlinear advection-diffusion equations is studied in this article, where the space fractional derivatives are evaluated by using weighted and shifted Grünwald difference oper...The higher-order numerical scheme of nonlinear advection-diffusion equations is studied in this article, where the space fractional derivatives are evaluated by using weighted and shifted Grünwald difference operators and combining the compact technique, in the time direction is discretized by the Crank-Nicolson method. Through the energy method, the stability and convergence of the numerical scheme in the sense of L<sub>2</sub>-norm are proved, and the convergence order is . Some examples are given to show that our numerical scheme is effective.展开更多
For the (2 + 1)-dimensional nonlinear dispersive Boussinesq equation, by using the bifurcation theory of planar dynamical systems to study its corresponding traveling wave system, the bifurcations and phase portraits ...For the (2 + 1)-dimensional nonlinear dispersive Boussinesq equation, by using the bifurcation theory of planar dynamical systems to study its corresponding traveling wave system, the bifurcations and phase portraits of the regular system are obtained. Under different parametric conditions, various sufficient conditions to guarantee the existence of analytical and non-analytical solutions of the singular system are given by using singular traveling wave theory. For certain special cases, some explicit and exact parametric representations of traveling wave solutions are derived such as analytical periodic waves and non-analytical periodic cusp waves. Further, two-dimensional wave plots of analytical periodic solutions and non-analytical periodic cusp wave solutions are drawn to visualize the dynamics of the equation.展开更多
Fractional differential equations have recently been applied in various areas of engineering, science, finance, applied mathematics, bio-engineering and others. However, many researchers remain unaware of this field. ...Fractional differential equations have recently been applied in various areas of engineering, science, finance, applied mathematics, bio-engineering and others. However, many researchers remain unaware of this field. In this paper, an efficient numerical method for solving the fractional Advection-dispersion equation (ADE) is considered. The fractional derivative is described in the Caputo sense. The method is based on Chebyshev approximations. The properties of Chebyshev polynomials are used to reduce ADE to a system of ordinary differential equations, which are solved using the finite difference method (FDM). Moreover, the convergence analysis and an upper bound of the error for the derived formula are given. Numerical solutions of ADE are presented and the results are compared with the exact solution.展开更多
In this paper, we provide a new way of characterizing the upper and lower bound for the concentration and the gradient of concentration in advection dispersion equation under the condition that source term, concentrat...In this paper, we provide a new way of characterizing the upper and lower bound for the concentration and the gradient of concentration in advection dispersion equation under the condition that source term, concentration and stirring term belong to BMO space.展开更多
The space-time fractional advection dispersion equations are linear partial pseudo-differential equations with spatial fractional derivatives in time and in space and are used to model transport at the earth surface. ...The space-time fractional advection dispersion equations are linear partial pseudo-differential equations with spatial fractional derivatives in time and in space and are used to model transport at the earth surface. The time fractional order is denoted by β∈ and ?is devoted to the space fractional order. The time fractional advection dispersion equations describe particle motion with memory in time. Space-fractional advection dispersion equations arise when velocity variations are heavy-tailed and describe particle motion that accounts for variation in the flow field over entire system. In this paper, I focus on finding the precise explicit discrete approximate solutions to these models for some values of ?with ?, ?while the Cauchy case as ?and the classical case as ?with ?are studied separately. I compare the numerical results of these models for different values of ?and ?and for some other related changes. The approximate solutions of these models are also discussed as a random walk with or without a memory depending on the value of . Then I prove that the discrete solution in the Fourierlaplace space of theses models converges in distribution to the Fourier-Laplace transform of the corresponding fractional differential equations for all the fractional values of ?and .展开更多
The waveguide which is at the center of our concerns in this work is a strongly flattened waveguide, that is to say characterized by a strong dispersion and in addition is strongly nonlinear. As this type of waveguide...The waveguide which is at the center of our concerns in this work is a strongly flattened waveguide, that is to say characterized by a strong dispersion and in addition is strongly nonlinear. As this type of waveguide contains multiple dispersion coefficients according to the degrees of spatial variation within it, our work in this article is to see how these dispersions and nonlinearities each influence the wave or the signal that can propagate in the waveguide. Since the partial differential equation which governs the dynamics of propagation in such transmission medium presents several dispersion and nonlinear coefficients, we check how they contribute to the choices of the solutions that we want them to verify this nonlinear partial differential equation. This effectively requires an adequate choice of the form of solution to be constructed. Thus, this article is based on three main pillars, namely: first of all, making a good choice of the solution function to be constructed, secondly, determining the exact solutions and, if necessary, remodeling the main equation such that it is possible;then check the impact of the dispersion and nonlinear coefficients on the solutions. Finally, the reliability of the solutions obtained is tested by a study of the propagation. Another very important aspect is the use of notions of probability to select the predominant solutions.展开更多
In a one-dimensional advection-diffusion equation with temporally dependent coefficients three cases may arise: solute dispersion parameter is time dependent while the flow domain transporting the solutes is uniform, ...In a one-dimensional advection-diffusion equation with temporally dependent coefficients three cases may arise: solute dispersion parameter is time dependent while the flow domain transporting the solutes is uniform, the former is uniform and the latter is time dependent and lastly the both parameters are time dependent. In the present work analytical solutions are obtained for the last case, studying the dispersion of continuous input point sources of uniform and increasing nature in an initially solute free semi-infinite domain. The solutions for the first two cases and for uniform dispersion along uniform flow are derived as particular cases. The dispersion parameter is not proportional to the velocity of the flow. The Laplace transformation technique is used. New space and time variables are introduced to get the solutions. The solutions in all possible combinations of increasing/decreasing temporal dependence are compared with each other with the help of graphs. It has been observed that the concentration attenuation with position and time is the fastest in case of decreasing dispersion in accelerating flow field.展开更多
Under the travelling wave transformation, the Camassa-Holm equation with dispersion is reduced to an integrable ordinary differential equation (ODE), whose general solution can be obtained using the trick of one-par...Under the travelling wave transformation, the Camassa-Holm equation with dispersion is reduced to an integrable ordinary differential equation (ODE), whose general solution can be obtained using the trick of one-parameter group. Furthermore, by using a complete discrimination system for polynomial, the classification of all single travelling wave solutions to the Camassa-Holm equation with dispersion is obtained. In particular, an affine subspace structure in the set of the solutions of the reduced ODE is obtained. More generally, an implicit linear structure in the Camassa-Holm equation with dispersion is found. According to the linear structure, we obtain the superposition of multi-solutions to Camassa-Holm equation with dispersion.展开更多
To put more information into a difference scheme of a differential equation for making an accurate prediction, a new kind of time integration scheme, known as the retrospective (RT) scheme, is proposed on the basis of...To put more information into a difference scheme of a differential equation for making an accurate prediction, a new kind of time integration scheme, known as the retrospective (RT) scheme, is proposed on the basis of the memorial dynamics. Stability criteria of the scheme for an advection equation in certain conditions are derived mathematically. The computations for the advection equation have been conducted with its RT scheme. It is shown that the accuracy of the scheme is much higher than that of the leapfrog (LF) difference scheme.展开更多
In this article, the existence, uniqueness and regularities of the global generalized solution and global classical solution for the periodic boundary value problem and the Cauchy problem of the general cubic double d...In this article, the existence, uniqueness and regularities of the global generalized solution and global classical solution for the periodic boundary value problem and the Cauchy problem of the general cubic double dispersion equationutt - uxx - auxxtt + bux4 - duxxt = f(u)xxare proved, and the sufficient conditions of blow-up of the solutions for the Cauchy problems in finite time are given.展开更多
Finite difference techniques are widely used for the numerical simulation of time-dependent partial differential equations. In order to get better accuracy at low computational cost, researchers have attempted to deve...Finite difference techniques are widely used for the numerical simulation of time-dependent partial differential equations. In order to get better accuracy at low computational cost, researchers have attempted to develop higher order methods by improving other lower order methods. However, these types of methods usually suffer from a high degree of numerical dispersion. In this paper, we review three higher order finite difference methods, higher order compact (HOC), compact Padé based (CPD) and non-compact Padé based (NCPD) schemes for the acoustic wave equation. We present the stability analysis of the three schemes and derive dispersion characteristics for these schemes. The effects of Courant Friedrichs Lewy (CFL) number, propagation angle and number of cells per wavelength on dispersion are studied.展开更多
The reproducing kernel particle method (RKPM) has been efficiently applied to problems with large deformations, high gradients and high modal density. In this paper, it is extended to solve a nonlocal problem modele...The reproducing kernel particle method (RKPM) has been efficiently applied to problems with large deformations, high gradients and high modal density. In this paper, it is extended to solve a nonlocal problem modeled by a fractional advectiondiffusion equation (FADE), which exhibits a boundary layer with low regularity. We formulate this method on a moving least-square approach. Via the enrichment of fractional-order power functions to the traditional integer-order basis for RKPM, leading terms of the solution to the FADE can be exactly reproduced, which guarantees a good approximation to the boundary layer. Numerical tests are performed to verify the proposed approach.展开更多
A comparison between a non-Gaussian puff model and an advanced time-dependent model to simulate the pollutant dispersion in the Planetary Boundary Layer is presented. The puff model is based on a general technique for...A comparison between a non-Gaussian puff model and an advanced time-dependent model to simulate the pollutant dispersion in the Planetary Boundary Layer is presented. The puff model is based on a general technique for solving the K-equation, using the truncated Gram-Charlier expansion (type A) of the concentration field and finite set equations for the corresponding moments. The other model (named ADMM: Analytical Dispersion Multilayers Model) is an semi- analytical solution to the time-dependent two-dimensional advection-diffusion equation based on a discretization of the PBL in N sub-layers;in each sub-layers the advection-diffusion equation is solved by the Laplace transform technique, considering an average value for eddy diffusivity and the wind speed. A preliminary performance evaluation is shown in the case of continuous emission from an elevated source in a variable boundary layer. Both models were able to correctly reproduce the concentration field measured and so to be used as operative air pollution models.展开更多
This paper studies the propagation of horizontally polarized shear waves in an internal magnetoelastic monoclinic stratum with irregularity in lower interface. The stratum is sandwiched between two magnetoelastic mono...This paper studies the propagation of horizontally polarized shear waves in an internal magnetoelastic monoclinic stratum with irregularity in lower interface. The stratum is sandwiched between two magnetoelastic monoclinic semi-infinite media. Dispersion equation is obtained in a closed form. In the absence of magnetic field and irregularity of the medium, the dispersion equation agrees with the equation of classical case in three layered media. The effects of magnetic field and size of irregularity on the phase velocity are depicted by means of graphs.展开更多
This paper studies dispersion of a G-type earthquake wave under the influence of a suppressed rigid boundary. Inside the Earth, the density and rigidity of the crustal layer and the mantle of the Earth vary exponentia...This paper studies dispersion of a G-type earthquake wave under the influence of a suppressed rigid boundary. Inside the Earth, the density and rigidity of the crustal layer and the mantle of the Earth vary exponentially and periodically along the depth. The displacements of the wave are found in the individual medium followed by a dispersion equation using a suitable analytic approach and a boundary condition. The prominent effect of inhomogeneity contained in the media, the rigid boundary plane, and the initial stress on the phase and group velocities is shown graphically.展开更多
The plasma temperature (or the kinetic pressure) anisotropy is an intrinsic characteristic of a collisionless magnetized plasma. In this paper, based on the two-fluid model, a dispersion equation of low-frequency ...The plasma temperature (or the kinetic pressure) anisotropy is an intrinsic characteristic of a collisionless magnetized plasma. In this paper, based on the two-fluid model, a dispersion equation of low-frequency (ω〈〈ωci, ωci the ion gyrofrequency) waves, including the plasma temperature anisotropy effect, is presented. We investigate the properties of low-frequency waves when the parallel temperature exceeds the perpendicular temperature, and especially their dependence on the propagation angle, pressure anisotropy, and energy closures. The results show that both the instable Alfven and slow modes are purely growing. The growth rate of the Alfven wave is not affected by the propagation angle or energy closures, while that of the slow wave depends sensitively on the propagation angle and energy closures as well as pressure anisotropy. The fast wave is always stable. We also show how to elaborate the symbolic calculation of the dispersion equation performed using Mathematica Notebook.展开更多
Atmospheric air pollution turbulent fluxes can be assumed to be proportional to the mean concentration gradient. This assumption, along with the equation of continuity, leads to the advection-diffusion equation. Many ...Atmospheric air pollution turbulent fluxes can be assumed to be proportional to the mean concentration gradient. This assumption, along with the equation of continuity, leads to the advection-diffusion equation. Many models simulating air pollution dispersion are based upon the solution (numerical or analytical) of the advection-diffusion equation as- suming turbulence parameterization for realistic physical scenarios. We present the general steady three-dimensional solution of the advection-diffusion equation considering a vertically inhomogeneous atmospheric boundary layer for arbitrary vertical profiles of wind and eddy-diffusion coefficients. Numerical results and comparison with experimental data are shown.展开更多
The interpolation method in a semi-Lagrangian scheme is decisive to its performance. Given the number of grid points one is considering to use for the interpolation, it does not necessarily follow that maximum formal ...The interpolation method in a semi-Lagrangian scheme is decisive to its performance. Given the number of grid points one is considering to use for the interpolation, it does not necessarily follow that maximum formal accuracy should give the best results. For the advection equation, the driving force of this method is the method of the characteristics, which accounts for the flow of information in the model equation. This leads naturally to an interpolation problem since the foot point is not in general located on a grid point. We use another interpolation scheme that will allow achieving the high order for the box initial condition.展开更多
In the present paper, by introducing the effective wave elevation, we transform the extended elliptic mild-slope equation with bottom friction, wave breaking and steep or rapidly varying bottom topography to the simpl...In the present paper, by introducing the effective wave elevation, we transform the extended elliptic mild-slope equation with bottom friction, wave breaking and steep or rapidly varying bottom topography to the simplest time-dependent hyperbolic equation. Based on this equation and the empirical nonlinear amplitude dispersion relation proposed by Li et al. (2003), the numerical scheme is established. Error analysis by Taylor expansion method shows that the numerical stability of the present model succeeds the merits in Song et al. (2007)'s model because of the introduced dissipation terms. For the purpose of verifying its performance on wave nonlinearity, rapidly varying topography and wave breaking, the present model is applied to study: (1) wave refraction and diffraction over a submerged elliptic shoal on a slope (Berkhoff et al., 1982); (2) Bragg reflection of monochromatic waves from the sinusoidal ripples (Davies and Heathershaw, 1985); (3) wave transformation near a shore attached breakwater (Watanabe and Maruyama, 1986). Comparisons of the numerical solutions with the experimental or theoretical ones or with those of other models (REF/DIF model and FUNWAVE model) show good results, which indicate that the present model is capable of giving favorably predictions of wave refraction, diffraction, reflection, shoaling, bottom friction, breaking energy dissipation and weak nonlinearity in the near shore zone.展开更多
In this paper, based on classical Lie group method, we study a multidimensional double dispersion equation, and get its infinitesimal generator, symmetry group and similarity reductions. In particular, similarity solu...In this paper, based on classical Lie group method, we study a multidimensional double dispersion equation, and get its infinitesimal generator, symmetry group and similarity reductions. In particular, similarity solutions and travelling wave solutions of the multidimensional double dispersion equation are derived from the reduction equations.展开更多
文摘The higher-order numerical scheme of nonlinear advection-diffusion equations is studied in this article, where the space fractional derivatives are evaluated by using weighted and shifted Grünwald difference operators and combining the compact technique, in the time direction is discretized by the Crank-Nicolson method. Through the energy method, the stability and convergence of the numerical scheme in the sense of L<sub>2</sub>-norm are proved, and the convergence order is . Some examples are given to show that our numerical scheme is effective.
文摘For the (2 + 1)-dimensional nonlinear dispersive Boussinesq equation, by using the bifurcation theory of planar dynamical systems to study its corresponding traveling wave system, the bifurcations and phase portraits of the regular system are obtained. Under different parametric conditions, various sufficient conditions to guarantee the existence of analytical and non-analytical solutions of the singular system are given by using singular traveling wave theory. For certain special cases, some explicit and exact parametric representations of traveling wave solutions are derived such as analytical periodic waves and non-analytical periodic cusp waves. Further, two-dimensional wave plots of analytical periodic solutions and non-analytical periodic cusp wave solutions are drawn to visualize the dynamics of the equation.
文摘Fractional differential equations have recently been applied in various areas of engineering, science, finance, applied mathematics, bio-engineering and others. However, many researchers remain unaware of this field. In this paper, an efficient numerical method for solving the fractional Advection-dispersion equation (ADE) is considered. The fractional derivative is described in the Caputo sense. The method is based on Chebyshev approximations. The properties of Chebyshev polynomials are used to reduce ADE to a system of ordinary differential equations, which are solved using the finite difference method (FDM). Moreover, the convergence analysis and an upper bound of the error for the derived formula are given. Numerical solutions of ADE are presented and the results are compared with the exact solution.
文摘In this paper, we provide a new way of characterizing the upper and lower bound for the concentration and the gradient of concentration in advection dispersion equation under the condition that source term, concentration and stirring term belong to BMO space.
文摘The space-time fractional advection dispersion equations are linear partial pseudo-differential equations with spatial fractional derivatives in time and in space and are used to model transport at the earth surface. The time fractional order is denoted by β∈ and ?is devoted to the space fractional order. The time fractional advection dispersion equations describe particle motion with memory in time. Space-fractional advection dispersion equations arise when velocity variations are heavy-tailed and describe particle motion that accounts for variation in the flow field over entire system. In this paper, I focus on finding the precise explicit discrete approximate solutions to these models for some values of ?with ?, ?while the Cauchy case as ?and the classical case as ?with ?are studied separately. I compare the numerical results of these models for different values of ?and ?and for some other related changes. The approximate solutions of these models are also discussed as a random walk with or without a memory depending on the value of . Then I prove that the discrete solution in the Fourierlaplace space of theses models converges in distribution to the Fourier-Laplace transform of the corresponding fractional differential equations for all the fractional values of ?and .
文摘The waveguide which is at the center of our concerns in this work is a strongly flattened waveguide, that is to say characterized by a strong dispersion and in addition is strongly nonlinear. As this type of waveguide contains multiple dispersion coefficients according to the degrees of spatial variation within it, our work in this article is to see how these dispersions and nonlinearities each influence the wave or the signal that can propagate in the waveguide. Since the partial differential equation which governs the dynamics of propagation in such transmission medium presents several dispersion and nonlinear coefficients, we check how they contribute to the choices of the solutions that we want them to verify this nonlinear partial differential equation. This effectively requires an adequate choice of the form of solution to be constructed. Thus, this article is based on three main pillars, namely: first of all, making a good choice of the solution function to be constructed, secondly, determining the exact solutions and, if necessary, remodeling the main equation such that it is possible;then check the impact of the dispersion and nonlinear coefficients on the solutions. Finally, the reliability of the solutions obtained is tested by a study of the propagation. Another very important aspect is the use of notions of probability to select the predominant solutions.
文摘In a one-dimensional advection-diffusion equation with temporally dependent coefficients three cases may arise: solute dispersion parameter is time dependent while the flow domain transporting the solutes is uniform, the former is uniform and the latter is time dependent and lastly the both parameters are time dependent. In the present work analytical solutions are obtained for the last case, studying the dispersion of continuous input point sources of uniform and increasing nature in an initially solute free semi-infinite domain. The solutions for the first two cases and for uniform dispersion along uniform flow are derived as particular cases. The dispersion parameter is not proportional to the velocity of the flow. The Laplace transformation technique is used. New space and time variables are introduced to get the solutions. The solutions in all possible combinations of increasing/decreasing temporal dependence are compared with each other with the help of graphs. It has been observed that the concentration attenuation with position and time is the fastest in case of decreasing dispersion in accelerating flow field.
文摘Under the travelling wave transformation, the Camassa-Holm equation with dispersion is reduced to an integrable ordinary differential equation (ODE), whose general solution can be obtained using the trick of one-parameter group. Furthermore, by using a complete discrimination system for polynomial, the classification of all single travelling wave solutions to the Camassa-Holm equation with dispersion is obtained. In particular, an affine subspace structure in the set of the solutions of the reduced ODE is obtained. More generally, an implicit linear structure in the Camassa-Holm equation with dispersion is found. According to the linear structure, we obtain the superposition of multi-solutions to Camassa-Holm equation with dispersion.
基金The project supported by the National Key Program for Developing Basic Sciences (G1999043408 and G1998040901-1)the National Natural Sciences Foundation of China (40175024 and 40035010)
文摘To put more information into a difference scheme of a differential equation for making an accurate prediction, a new kind of time integration scheme, known as the retrospective (RT) scheme, is proposed on the basis of the memorial dynamics. Stability criteria of the scheme for an advection equation in certain conditions are derived mathematically. The computations for the advection equation have been conducted with its RT scheme. It is shown that the accuracy of the scheme is much higher than that of the leapfrog (LF) difference scheme.
文摘In this article, the existence, uniqueness and regularities of the global generalized solution and global classical solution for the periodic boundary value problem and the Cauchy problem of the general cubic double dispersion equationutt - uxx - auxxtt + bux4 - duxxt = f(u)xxare proved, and the sufficient conditions of blow-up of the solutions for the Cauchy problems in finite time are given.
文摘Finite difference techniques are widely used for the numerical simulation of time-dependent partial differential equations. In order to get better accuracy at low computational cost, researchers have attempted to develop higher order methods by improving other lower order methods. However, these types of methods usually suffer from a high degree of numerical dispersion. In this paper, we review three higher order finite difference methods, higher order compact (HOC), compact Padé based (CPD) and non-compact Padé based (NCPD) schemes for the acoustic wave equation. We present the stability analysis of the three schemes and derive dispersion characteristics for these schemes. The effects of Courant Friedrichs Lewy (CFL) number, propagation angle and number of cells per wavelength on dispersion are studied.
基金supported partly by the National Natural Science Foundation of China (Grant 11521202)support from the Chinese Scholarship Councilpartially support by an Army Research Office (Grant W911NF-15-10569)
文摘The reproducing kernel particle method (RKPM) has been efficiently applied to problems with large deformations, high gradients and high modal density. In this paper, it is extended to solve a nonlocal problem modeled by a fractional advectiondiffusion equation (FADE), which exhibits a boundary layer with low regularity. We formulate this method on a moving least-square approach. Via the enrichment of fractional-order power functions to the traditional integer-order basis for RKPM, leading terms of the solution to the FADE can be exactly reproduced, which guarantees a good approximation to the boundary layer. Numerical tests are performed to verify the proposed approach.
文摘A comparison between a non-Gaussian puff model and an advanced time-dependent model to simulate the pollutant dispersion in the Planetary Boundary Layer is presented. The puff model is based on a general technique for solving the K-equation, using the truncated Gram-Charlier expansion (type A) of the concentration field and finite set equations for the corresponding moments. The other model (named ADMM: Analytical Dispersion Multilayers Model) is an semi- analytical solution to the time-dependent two-dimensional advection-diffusion equation based on a discretization of the PBL in N sub-layers;in each sub-layers the advection-diffusion equation is solved by the Laplace transform technique, considering an average value for eddy diffusivity and the wind speed. A preliminary performance evaluation is shown in the case of continuous emission from an elevated source in a variable boundary layer. Both models were able to correctly reproduce the concentration field measured and so to be used as operative air pollution models.
基金supported by the Department of Science and Technology of New Delhi(No.SR/S4/MS:436/07)
文摘This paper studies the propagation of horizontally polarized shear waves in an internal magnetoelastic monoclinic stratum with irregularity in lower interface. The stratum is sandwiched between two magnetoelastic monoclinic semi-infinite media. Dispersion equation is obtained in a closed form. In the absence of magnetic field and irregularity of the medium, the dispersion equation agrees with the equation of classical case in three layered media. The effects of magnetic field and size of irregularity on the phase velocity are depicted by means of graphs.
基金supported by the National Natural Science Foundation of China(No.11471087)the China Postdoctoral Science Foundation(No.2013M540270)+2 种基金the Heilongjiang Postdoctoral Foundation(No.LBH-Z13056)the Support Plan for the Young College Academic Backbone of Heilongjiang Province(No.1252G020)the Fundamental Research Funds for the Central Universities
文摘This paper studies dispersion of a G-type earthquake wave under the influence of a suppressed rigid boundary. Inside the Earth, the density and rigidity of the crustal layer and the mantle of the Earth vary exponentially and periodically along the depth. The displacements of the wave are found in the individual medium followed by a dispersion equation using a suitable analytic approach and a boundary condition. The prominent effect of inhomogeneity contained in the media, the rigid boundary plane, and the initial stress on the phase and group velocities is shown graphically.
基金supported by National Natural Science Foundation of China(Nos.10973043,41074107)Ministry of Science and Technology of China(No.2011CB811402)
文摘The plasma temperature (or the kinetic pressure) anisotropy is an intrinsic characteristic of a collisionless magnetized plasma. In this paper, based on the two-fluid model, a dispersion equation of low-frequency (ω〈〈ωci, ωci the ion gyrofrequency) waves, including the plasma temperature anisotropy effect, is presented. We investigate the properties of low-frequency waves when the parallel temperature exceeds the perpendicular temperature, and especially their dependence on the propagation angle, pressure anisotropy, and energy closures. The results show that both the instable Alfven and slow modes are purely growing. The growth rate of the Alfven wave is not affected by the propagation angle or energy closures, while that of the slow wave depends sensitively on the propagation angle and energy closures as well as pressure anisotropy. The fast wave is always stable. We also show how to elaborate the symbolic calculation of the dispersion equation performed using Mathematica Notebook.
文摘Atmospheric air pollution turbulent fluxes can be assumed to be proportional to the mean concentration gradient. This assumption, along with the equation of continuity, leads to the advection-diffusion equation. Many models simulating air pollution dispersion are based upon the solution (numerical or analytical) of the advection-diffusion equation as- suming turbulence parameterization for realistic physical scenarios. We present the general steady three-dimensional solution of the advection-diffusion equation considering a vertically inhomogeneous atmospheric boundary layer for arbitrary vertical profiles of wind and eddy-diffusion coefficients. Numerical results and comparison with experimental data are shown.
文摘The interpolation method in a semi-Lagrangian scheme is decisive to its performance. Given the number of grid points one is considering to use for the interpolation, it does not necessarily follow that maximum formal accuracy should give the best results. For the advection equation, the driving force of this method is the method of the characteristics, which accounts for the flow of information in the model equation. This leads naturally to an interpolation problem since the foot point is not in general located on a grid point. We use another interpolation scheme that will allow achieving the high order for the box initial condition.
基金Open Fund of Key Laboratory of Coastal Disasters and Defence (Ministry of Education)National Natural Science Foundation of China under contract No. 50779015
文摘In the present paper, by introducing the effective wave elevation, we transform the extended elliptic mild-slope equation with bottom friction, wave breaking and steep or rapidly varying bottom topography to the simplest time-dependent hyperbolic equation. Based on this equation and the empirical nonlinear amplitude dispersion relation proposed by Li et al. (2003), the numerical scheme is established. Error analysis by Taylor expansion method shows that the numerical stability of the present model succeeds the merits in Song et al. (2007)'s model because of the introduced dissipation terms. For the purpose of verifying its performance on wave nonlinearity, rapidly varying topography and wave breaking, the present model is applied to study: (1) wave refraction and diffraction over a submerged elliptic shoal on a slope (Berkhoff et al., 1982); (2) Bragg reflection of monochromatic waves from the sinusoidal ripples (Davies and Heathershaw, 1985); (3) wave transformation near a shore attached breakwater (Watanabe and Maruyama, 1986). Comparisons of the numerical solutions with the experimental or theoretical ones or with those of other models (REF/DIF model and FUNWAVE model) show good results, which indicate that the present model is capable of giving favorably predictions of wave refraction, diffraction, reflection, shoaling, bottom friction, breaking energy dissipation and weak nonlinearity in the near shore zone.
文摘In this paper, based on classical Lie group method, we study a multidimensional double dispersion equation, and get its infinitesimal generator, symmetry group and similarity reductions. In particular, similarity solutions and travelling wave solutions of the multidimensional double dispersion equation are derived from the reduction equations.