Climate models are vital for understanding and projecting global climate change and its associated impacts.However,these models suffer from biases that limit their accuracy in historical simulations and the trustworth...Climate models are vital for understanding and projecting global climate change and its associated impacts.However,these models suffer from biases that limit their accuracy in historical simulations and the trustworthiness of future projections.Addressing these challenges requires addressing internal variability,hindering the direct alignment between model simulations and observations,and thwarting conventional supervised learning methods.Here,we employ an unsupervised Cycle-consistent Generative Adversarial Network(CycleGAN),to correct daily Sea Surface Temperature(SST)simulations from the Community Earth System Model 2(CESM2).Our results reveal that the CycleGAN not only corrects climatological biases but also improves the simulation of major dynamic modes including the El Niño-Southern Oscillation(ENSO)and the Indian Ocean Dipole mode,as well as SST extremes.Notably,it substantially corrects climatological SST biases,decreasing the globally averaged Root-Mean-Square Error(RMSE)by 58%.Intriguingly,the CycleGAN effectively addresses the well-known excessive westward bias in ENSO SST anomalies,a common issue in climate models that traditional methods,like quantile mapping,struggle to rectify.Additionally,it substantially improves the simulation of SST extremes,raising the pattern correlation coefficient(PCC)from 0.56 to 0.88 and lowering the RMSE from 0.5 to 0.32.This enhancement is attributed to better representations of interannual,intraseasonal,and synoptic scales variabilities.Our study offers a novel approach to correct global SST simulations and underscores its effectiveness across different time scales and primary dynamical modes.展开更多
Most existing secret sharing schemes are constructed to realize generalaccess structure, which is defined in terms of authorized groups of participants, and is unable tobe applied directly to the design of intrusion t...Most existing secret sharing schemes are constructed to realize generalaccess structure, which is defined in terms of authorized groups of participants, and is unable tobe applied directly to the design of intrusion tolerant system, which often concerns corruptiblegroups of participants instead of authorized ones. Instead, the generalized adversary structure,which specifies the corruptible subsets of participants, can be determined directly by exploit ofthe system setting and the attributes of all participants. In this paper an efficient secret sharingscheme realizing generalized adversary structure is proposed, and it is proved that the schemesatisfies both properties of the secret sharing scheme, i.e., the reconstruction property and theperfect property. The main features of this scheme are that it performs modular additions andsubtractions only, and each share appears in multiple share sets and is thus replicated. The formeris an advantage in terms of computational complexity, and the latter is an advantage when recoveryof some corrupted participants is necessary. So our scheme can achieve lower computation cost andhigher availability. Some reduction on the scheme is also done finally, based on an equivalencerelation defined over adversary structure. Analysis shows that reduced scheme still preserves theproperties of the original one.展开更多
As modern communication technology advances apace,the digital communication signals identification plays an important role in cognitive radio networks,the communication monitoring and management systems.AI has become ...As modern communication technology advances apace,the digital communication signals identification plays an important role in cognitive radio networks,the communication monitoring and management systems.AI has become a promising solution to this problem due to its powerful modeling capability,which has become a consensus in academia and industry.However,because of the data-dependence and inexplicability of AI models and the openness of electromagnetic space,the physical layer digital communication signals identification model is threatened by adversarial attacks.Adversarial examples pose a common threat to AI models,where well-designed and slight perturbations added to input data can cause wrong results.Therefore,the security of AI models for the digital communication signals identification is the premise of its efficient and credible applications.In this paper,we first launch adversarial attacks on the end-to-end AI model for automatic modulation classifi-cation,and then we explain and present three defense mechanisms based on the adversarial principle.Next we present more detailed adversarial indicators to evaluate attack and defense behavior.Finally,a demonstration verification system is developed to show that the adversarial attack is a real threat to the digital communication signals identification model,which should be paid more attention in future research.展开更多
In recent years,deep learning has been the mainstream technology for fingerprint liveness detection(FLD)tasks because of its remarkable performance.However,recent studies have shown that these deep fake fingerprint de...In recent years,deep learning has been the mainstream technology for fingerprint liveness detection(FLD)tasks because of its remarkable performance.However,recent studies have shown that these deep fake fingerprint detection(DFFD)models are not resistant to attacks by adversarial examples,which are generated by the introduction of subtle perturbations in the fingerprint image,allowing the model to make fake judgments.Most of the existing adversarial example generation methods are based on gradient optimization,which is easy to fall into local optimal,resulting in poor transferability of adversarial attacks.In addition,the perturbation added to the blank area of the fingerprint image is easily perceived by the human eye,leading to poor visual quality.In response to the above challenges,this paper proposes a novel adversarial attack method based on local adaptive gradient variance for DFFD.The ridge texture area within the fingerprint image has been identified and designated as the region for perturbation generation.Subsequently,the images are fed into the targeted white-box model,and the gradient direction is optimized to compute gradient variance.Additionally,an adaptive parameter search method is proposed using stochastic gradient ascent to explore the parameter values during adversarial example generation,aiming to maximize adversarial attack performance.Experimental results on two publicly available fingerprint datasets show that ourmethod achieves higher attack transferability and robustness than existing methods,and the perturbation is harder to perceive.展开更多
Adversarial distillation(AD)has emerged as a potential solution to tackle the challenging optimization problem of loss with hard labels in adversarial training.However,fixed sample-agnostic and student-egocentric atta...Adversarial distillation(AD)has emerged as a potential solution to tackle the challenging optimization problem of loss with hard labels in adversarial training.However,fixed sample-agnostic and student-egocentric attack strategies are unsuitable for distillation.Additionally,the reliability of guidance from static teachers diminishes as target models become more robust.This paper proposes an AD method called Learnable Distillation Attack Strategies and Evolvable Teachers Adversarial Distillation(LDAS&ET-AD).Firstly,a learnable distillation attack strategies generating mechanism is developed to automatically generate sample-dependent attack strategies tailored for distillation.A strategy model is introduced to produce attack strategies that enable adversarial examples(AEs)to be created in areas where the target model significantly diverges from the teachers by competing with the target model in minimizing or maximizing the AD loss.Secondly,a teacher evolution strategy is introduced to enhance the reliability and effectiveness of knowledge in improving the generalization performance of the target model.By calculating the experimentally updated target model’s validation performance on both clean samples and AEs,the impact of distillation from each training sample and AE on the target model’s generalization and robustness abilities is assessed to serve as feedback to fine-tune standard and robust teachers accordingly.Experiments evaluate the performance of LDAS&ET-AD against different adversarial attacks on the CIFAR-10 and CIFAR-100 datasets.The experimental results demonstrate that the proposed method achieves a robust precision of 45.39%and 42.63%against AutoAttack(AA)on the CIFAR-10 dataset for ResNet-18 and MobileNet-V2,respectively,marking an improvement of 2.31%and 3.49%over the baseline method.In comparison to state-of-the-art adversarial defense techniques,our method surpasses Introspective Adversarial Distillation,the top-performing method in terms of robustness under AA attack for the CIFAR-10 dataset,with enhancements of 1.40%and 1.43%for ResNet-18 and MobileNet-V2,respectively.These findings demonstrate the effectiveness of our proposed method in enhancing the robustness of deep learning networks(DNNs)against prevalent adversarial attacks when compared to other competing methods.In conclusion,LDAS&ET-AD provides reliable and informative soft labels to one of the most promising defense methods,AT,alleviating the limitations of untrusted teachers and unsuitable AEs in existing AD techniques.We hope this paper promotes the development of DNNs in real-world trust-sensitive fields and helps ensure a more secure and dependable future for artificial intelligence systems.展开更多
While autonomous vehicles are vital components of intelligent transportation systems,ensuring the trustworthiness of decision-making remains a substantial challenge in realizing autonomous driving.Therefore,we present...While autonomous vehicles are vital components of intelligent transportation systems,ensuring the trustworthiness of decision-making remains a substantial challenge in realizing autonomous driving.Therefore,we present a novel robust reinforcement learning approach with safety guarantees to attain trustworthy decision-making for autonomous vehicles.The proposed technique ensures decision trustworthiness in terms of policy robustness and collision safety.Specifically,an adversary model is learned online to simulate the worst-case uncertainty by approximating the optimal adversarial perturbations on the observed states and environmental dynamics.In addition,an adversarial robust actor-critic algorithm is developed to enable the agent to learn robust policies against perturbations in observations and dynamics.Moreover,we devise a safety mask to guarantee the collision safety of the autonomous driving agent during both the training and testing processes using an interpretable knowledge model known as the Responsibility-Sensitive Safety Model.Finally,the proposed approach is evaluated through both simulations and experiments.These results indicate that the autonomous driving agent can make trustworthy decisions and drastically reduce the number of collisions through robust safety policies.展开更多
Mechanically cleaved two-dimensional materials are random in size and thickness.Recognizing atomically thin flakes by human experts is inefficient and unsuitable for scalable production.Deep learning algorithms have b...Mechanically cleaved two-dimensional materials are random in size and thickness.Recognizing atomically thin flakes by human experts is inefficient and unsuitable for scalable production.Deep learning algorithms have been adopted as an alternative,nevertheless a major challenge is a lack of sufficient actual training images.Here we report the generation of synthetic two-dimensional materials images using StyleGAN3 to complement the dataset.DeepLabv3Plus network is trained with the synthetic images which reduces overfitting and improves recognition accuracy to over 90%.A semi-supervisory technique for labeling images is introduced to reduce manual efforts.The sharper edges recognized by this method facilitate material stacking with precise edge alignment,which benefits exploring novel properties of layered-material devices that crucially depend on the interlayer twist-angle.This feasible and efficient method allows for the rapid and high-quality manufacturing of atomically thin materials and devices.展开更多
Antivirus vendors and the research community employ Machine Learning(ML)or Deep Learning(DL)-based static analysis techniques for efficient identification of new threats,given the continual emergence of novel malware ...Antivirus vendors and the research community employ Machine Learning(ML)or Deep Learning(DL)-based static analysis techniques for efficient identification of new threats,given the continual emergence of novel malware variants.On the other hand,numerous researchers have reported that Adversarial Examples(AEs),generated by manipulating previously detected malware,can successfully evade ML/DL-based classifiers.Commercial antivirus systems,in particular,have been identified as vulnerable to such AEs.This paper firstly focuses on conducting black-box attacks to circumvent ML/DL-based malware classifiers.Our attack method utilizes seven different perturbations,including Overlay Append,Section Append,and Break Checksum,capitalizing on the ambiguities present in the PE format,as previously employed in evasion attack research.By directly applying the perturbation techniques to PE binaries,our attack method eliminates the need to grapple with the problem-feature space dilemma,a persistent challenge in many evasion attack studies.Being a black-box attack,our method can generate AEs that successfully evade both DL-based and ML-based classifiers.Also,AEs generated by the attack method retain their executability and malicious behavior,eliminating the need for functionality verification.Through thorogh evaluations,we confirmed that the attack method achieves an evasion rate of 65.6%against well-known ML-based malware detectors and can reach a remarkable 99%evasion rate against well-known DL-based malware detectors.Furthermore,our AEs demonstrated the capability to bypass detection by 17%of vendors out of the 64 on VirusTotal(VT).In addition,we propose a defensive approach that utilizes Trend Locality Sensitive Hashing(TLSH)to construct a similarity-based defense model.Through several experiments on the approach,we verified that our defense model can effectively counter AEs generated by the perturbation techniques.In conclusion,our defense model alleviates the limitation of the most promising defense method,adversarial training,which is only effective against the AEs that are included in the training classifiers.展开更多
Timely inspection of defects on the surfaces of wind turbine blades can effectively prevent unpredictable accidents.To this end,this study proposes a semi-supervised object-detection network based on You Only Looking ...Timely inspection of defects on the surfaces of wind turbine blades can effectively prevent unpredictable accidents.To this end,this study proposes a semi-supervised object-detection network based on You Only Looking Once version 4(YOLOv4).A semi-supervised structure comprising a generative adversarial network(GAN)was designed to overcome the difficulty in obtaining sufficient samples and sample labeling.In a GAN,the generator is realized by an encoder-decoder network,where the backbone of the encoder is YOLOv4 and the decoder comprises inverse convolutional layers.Partial features from the generator are passed to the defect detection network.Deploying several unlabeled images can significantly improve the generalization and recognition capabilities of defect-detection models.The small-scale object detection capacity of the network can be improved by enhancing essential features in the feature map by adding the concurrent spatial and channel squeeze and excitation(scSE)attention module to the three parts of the YOLOv4 network.A balancing improvement was made to the loss function of YOLOv4 to overcome the imbalance problem of the defective species.The results for both the single-and multi-category defect datasets show that the improved model can make good use of the features of the unlabeled images.The accuracy of wind turbine blade defect detection also has a significant advantage over classical object detection algorithms,including faster R-CNN and DETR.展开更多
Deep learning is capable of greatly promoting the progress of super-resolution imaging technology in terms of imaging and reconstruction speed,imaging resolution,and imagingflux.This paper proposes a deep neural netwo...Deep learning is capable of greatly promoting the progress of super-resolution imaging technology in terms of imaging and reconstruction speed,imaging resolution,and imagingflux.This paper proposes a deep neural network based on a generative adversarial network(GAN).The generator employs a U-Net-based network,which integrates Dense Net for the downsampling component.The proposed method has excellent properties,for example,the network model is trained with several different datasets of biological structures;the trained model can improve the imaging resolution of different microscopy imaging modalities such as confocal imaging and wide-field imaging;and the model demonstrates a generalized ability to improve the resolution of different biological structures even out of the datasets.In addition,experimental results showed that the method improved the resolution of caveolin-coated pits(CCPs)structures from 264 nm to 138 nm,a 1.91-fold increase,and nearly doubled the resolution of DNA molecules imaged while being transported through microfluidic channels.展开更多
Neutron radiography is a crucial nondestructive testing technology widely used in the aerospace,military,and nuclear industries.However,because of the physical limitations of neutron sources and collimators,the result...Neutron radiography is a crucial nondestructive testing technology widely used in the aerospace,military,and nuclear industries.However,because of the physical limitations of neutron sources and collimators,the resulting neutron radiographic images inevitably exhibit multiple distortions,including noise,geometric unsharpness,and white spots.Furthermore,these distortions are particularly significant in compact neutron radiography systems with low neutron fluxes.Therefore,in this study,we devised a multi-distortion suppression network that employs a modified generative adversarial network to improve the quality of degraded neutron radiographic images.Real neutron radiographic image datasets with various types and levels of distortion were built for the first time as multi-distortion suppression datasets.Thereafter,the coordinate attention mechanism was incorporated into the backbone network to augment the capability of the proposed network to learn the abstract relationship between ideally clear and degraded images.Extensive experiments were performed;the results show that the proposed method can effectively suppress multiple distortions in real neutron radiographic images and achieve state-of-theart perceptual visual quality,thus demonstrating its application potential in neutron radiography.展开更多
The healthcare data requires accurate disease detection analysis,real-timemonitoring,and advancements to ensure proper treatment for patients.Consequently,Machine Learning methods are widely utilized in Smart Healthca...The healthcare data requires accurate disease detection analysis,real-timemonitoring,and advancements to ensure proper treatment for patients.Consequently,Machine Learning methods are widely utilized in Smart Healthcare Systems(SHS)to extract valuable features fromheterogeneous and high-dimensional healthcare data for predicting various diseases and monitoring patient activities.These methods are employed across different domains that are susceptible to adversarial attacks,necessitating careful consideration.Hence,this paper proposes a crossover-based Multilayer Perceptron(CMLP)model.The collected samples are pre-processed and fed into the crossover-based multilayer perceptron neural network to detect adversarial attacks on themedical records of patients.Once an attack is detected,healthcare professionals are promptly alerted to prevent data leakage.The paper utilizes two datasets,namely the synthetic dataset and the University of Queensland Vital Signs(UQVS)dataset,from which numerous samples are collected.Experimental results are conducted to evaluate the performance of the proposed CMLP model,utilizing various performancemeasures such as Recall,Precision,Accuracy,and F1-score to predict patient activities.Comparing the proposed method with existing approaches,it achieves the highest accuracy,precision,recall,and F1-score.Specifically,the proposedmethod achieves a precision of 93%,an accuracy of 97%,an F1-score of 92%,and a recall of 92%.展开更多
The automatic stealth task of military time-sensitive targets plays a crucial role in maintaining national military security and mastering battlefield dynamics in military applications.We propose a novel Military Time...The automatic stealth task of military time-sensitive targets plays a crucial role in maintaining national military security and mastering battlefield dynamics in military applications.We propose a novel Military Time-sensitive Targets Stealth Network via Real-time Mask Generation(MTTSNet).According to our knowledge,this is the first technology to automatically remove military targets in real-time from videos.The critical steps of MTTSNet are as follows:First,we designed a real-time mask generation network based on the encoder-decoder framework,combined with the domain expansion structure,to effectively extract mask images.Specifically,the ASPP structure in the encoder could achieve advanced semantic feature fusion.The decoder stacked high-dimensional information with low-dimensional information to obtain an effective mask layer.Subsequently,the domain expansion module guided the adaptive expansion of mask images.Second,a context adversarial generation network based on gated convolution was constructed to achieve background restoration of mask positions in the original image.In addition,our method worked in an end-to-end manner.A particular semantic segmentation dataset for military time-sensitive targets has been constructed,called the Military Time-sensitive Target Masking Dataset(MTMD).The MTMD dataset experiment successfully demonstrated that this method could create a mask that completely occludes the target and that the target could be hidden in real time using this mask.We demonstrated the concealment performance of our proposed method by comparing it to a number of well-known and highly optimized baselines.展开更多
The convergence of Internet of Things(IoT),5G,and cloud collaboration offers tailored solutions to the rigorous demands of multi-flow integrated energy aggregation dispatch data processing.While generative adversarial...The convergence of Internet of Things(IoT),5G,and cloud collaboration offers tailored solutions to the rigorous demands of multi-flow integrated energy aggregation dispatch data processing.While generative adversarial networks(GANs)are instrumental in resource scheduling,their application in this domain is impeded by challenges such as convergence speed,inferior optimality searching capability,and the inability to learn from failed decision making feedbacks.Therefore,a cloud-edge collaborative federated GAN-based communication and computing resource scheduling algorithm with long-term constraint violation sensitiveness is proposed to address these challenges.The proposed algorithm facilitates real-time,energy-efficient data processing by optimizing transmission power control,data migration,and computing resource allocation.It employs federated learning for global parameter aggregation to enhance GAN parameter updating and dynamically adjusts GAN learning rates and global aggregation weights based on energy consumption constraint violations.Simulation results indicate that the proposed algorithm effectively reduces data processing latency,energy consumption,and convergence time.展开更多
In this paper,we study the covert performance of the downlink low earth orbit(LEO)satellite communication,where the unmanned aerial vehicle(UAV)is employed as a cooperative jammer.To maximize the covert rate of the LE...In this paper,we study the covert performance of the downlink low earth orbit(LEO)satellite communication,where the unmanned aerial vehicle(UAV)is employed as a cooperative jammer.To maximize the covert rate of the LEO satellite transmission,a multi-objective problem is formulated to jointly optimize the UAV’s jamming power and trajectory.For practical consideration,we assume that the UAV can only have partial environmental information,and can’t know the detection threshold and exact location of the eavesdropper on the ground.To solve the multiobjective problem,we propose the data-driven generative adversarial network(DD-GAN)based method to optimize the power and trajectory of the UAV,in which the sample data is collected by using genetic algorithm(GA).Simulation results show that the jamming solution of UAV generated by DD-GAN can achieve an effective trade-off between covert rate and probability of detection errors when only limited prior information is obtained.展开更多
Continuous-variable quantum key distribution with a local local oscillator(LLO CVQKD)has been extensively researched due to its simplicity and security.For practical security of an LLO CVQKD system,there are two main ...Continuous-variable quantum key distribution with a local local oscillator(LLO CVQKD)has been extensively researched due to its simplicity and security.For practical security of an LLO CVQKD system,there are two main attack modes referred to as reference pulse attack and polarization attack presently.However,there is currently no general defense strategy against such attacks,and the security of the system needs further investigation.Here,we employ a deep learning framework called generative adversarial networks(GANs)to detect both attacks.We first analyze the data in different cases,derive a feature vector as input to a GAN model,and then show the training and testing process of the GAN model for attack classification.The proposed model has two parts,a discriminator and a generator,both of which employ a convolutional neural network(CNN)to improve accuracy.Simulation results show that the proposed scheme can detect and classify attacks without reducing the secret key rate and the maximum transmission distance.It only establishes a detection model by monitoring features of the pulse without adding additional devices.展开更多
With the widespread use of machine learning(ML)technology,the operational efficiency and responsiveness of power grids have been significantly enhanced,allowing smart grids to achieve high levels of automation and int...With the widespread use of machine learning(ML)technology,the operational efficiency and responsiveness of power grids have been significantly enhanced,allowing smart grids to achieve high levels of automation and intelligence.However,tree ensemble models commonly used in smart grids are vulnerable to adversarial attacks,making it urgent to enhance their robustness.To address this,we propose a robustness enhancement method that incorporates physical constraints into the node-splitting decisions of tree ensembles.Our algorithm improves robustness by developing a dataset of adversarial examples that comply with physical laws,ensuring training data accurately reflects possible attack scenarios while adhering to physical rules.In our experiments,the proposed method increased robustness against adversarial attacks by 100%when applied to real grid data under physical constraints.These results highlight the advantages of our method in maintaining efficient and secure operation of smart grids under adversarial conditions.展开更多
Website fingerprinting,also known asWF,is a traffic analysis attack that enables local eavesdroppers to infer a user’s browsing destination,even when using the Tor anonymity network.While advanced attacks based on de...Website fingerprinting,also known asWF,is a traffic analysis attack that enables local eavesdroppers to infer a user’s browsing destination,even when using the Tor anonymity network.While advanced attacks based on deep neural network(DNN)can performfeature engineering and attain accuracy rates of over 98%,research has demonstrated thatDNNis vulnerable to adversarial samples.As a result,many researchers have explored using adversarial samples as a defense mechanism against DNN-based WF attacks and have achieved considerable success.However,these methods suffer from high bandwidth overhead or require access to the target model,which is unrealistic.This paper proposes CMAES-WFD,a black-box WF defense based on adversarial samples.The process of generating adversarial examples is transformed into a constrained optimization problem solved by utilizing the Covariance Matrix Adaptation Evolution Strategy(CMAES)optimization algorithm.Perturbations are injected into the local parts of the original traffic to control bandwidth overhead.According to the experiment results,CMAES-WFD was able to significantly decrease the accuracy of Deep Fingerprinting(DF)and VarCnn to below 8.3%and the bandwidth overhead to a maximum of only 14.6%and 20.5%,respectively.Specially,for Automated Website Fingerprinting(AWF)with simple structure,CMAES-WFD reduced the classification accuracy to only 6.7%and the bandwidth overhead to less than 7.4%.Moreover,it was demonstrated that CMAES-WFD was robust against adversarial training to a certain extent.展开更多
Readout errors caused by measurement noise are a significant source of errors in quantum circuits,which severely affect the output results and are an urgent problem to be solved in noisy-intermediate scale quantum(NIS...Readout errors caused by measurement noise are a significant source of errors in quantum circuits,which severely affect the output results and are an urgent problem to be solved in noisy-intermediate scale quantum(NISQ)computing.In this paper,we use the bit-flip averaging(BFA)method to mitigate frequent readout errors in quantum generative adversarial networks(QGAN)for image generation,which simplifies the response matrix structure by averaging the qubits for each random bit-flip in advance,successfully solving problems with high cost of measurement for traditional error mitigation methods.Our experiments were simulated in Qiskit using the handwritten digit image recognition dataset under the BFA-based method,the Kullback-Leibler(KL)divergence of the generated images converges to 0.04,0.05,and 0.1 for readout error probabilities of p=0.01,p=0.05,and p=0.1,respectively.Additionally,by evaluating the fidelity of the quantum states representing the images,we observe average fidelity values of 0.97,0.96,and 0.95 for the three readout error probabilities,respectively.These results demonstrate the robustness of the model in mitigating readout errors and provide a highly fault tolerant mechanism for image generation models.展开更多
Generative adversarial networks(GANs)with gaming abilities have been widely applied in image generation.However,gamistic generators and discriminators may reduce the robustness of the obtained GANs in image generation...Generative adversarial networks(GANs)with gaming abilities have been widely applied in image generation.However,gamistic generators and discriminators may reduce the robustness of the obtained GANs in image generation under varying scenes.Enhancing the relation of hierarchical information in a generation network and enlarging differences of different network architectures can facilitate more structural information to improve the generation effect for image generation.In this paper,we propose an enhanced GAN via improving a generator for image generation(EIGGAN).EIGGAN applies a spatial attention to a generator to extract salient information to enhance the truthfulness of the generated images.Taking into relation the context account,parallel residual operations are fused into a generation network to extract more structural information from the different layers.Finally,a mixed loss function in a GAN is exploited to make a tradeoff between speed and accuracy to generate more realistic images.Experimental results show that the proposed method is superior to popular methods,i.e.,Wasserstein GAN with gradient penalty(WGAN-GP)in terms of many indexes,i.e.,Frechet Inception Distance,Learned Perceptual Image Patch Similarity,Multi-Scale Structural Similarity Index Measure,Kernel Inception Distance,Number of Statistically-Different Bins,Inception Score and some visual images for image generation.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.42141019 and 42261144687)the Second Tibetan Plateau Scientific Expedition and Research(STEP)program(Grant No.2019QZKK0102)+4 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB42010404)the National Natural Science Foundation of China(Grant No.42175049)the Guangdong Meteorological Service Science and Technology Research Project(Grant No.GRMC2021M01)the National Key Scientific and Technological Infrastructure project“Earth System Science Numerical Simulator Facility”(EarthLab)for computational support and Prof.Shiming XIANG for many useful discussionsNiklas BOERS acknowledges funding from the Volkswagen foundation.
文摘Climate models are vital for understanding and projecting global climate change and its associated impacts.However,these models suffer from biases that limit their accuracy in historical simulations and the trustworthiness of future projections.Addressing these challenges requires addressing internal variability,hindering the direct alignment between model simulations and observations,and thwarting conventional supervised learning methods.Here,we employ an unsupervised Cycle-consistent Generative Adversarial Network(CycleGAN),to correct daily Sea Surface Temperature(SST)simulations from the Community Earth System Model 2(CESM2).Our results reveal that the CycleGAN not only corrects climatological biases but also improves the simulation of major dynamic modes including the El Niño-Southern Oscillation(ENSO)and the Indian Ocean Dipole mode,as well as SST extremes.Notably,it substantially corrects climatological SST biases,decreasing the globally averaged Root-Mean-Square Error(RMSE)by 58%.Intriguingly,the CycleGAN effectively addresses the well-known excessive westward bias in ENSO SST anomalies,a common issue in climate models that traditional methods,like quantile mapping,struggle to rectify.Additionally,it substantially improves the simulation of SST extremes,raising the pattern correlation coefficient(PCC)from 0.56 to 0.88 and lowering the RMSE from 0.5 to 0.32.This enhancement is attributed to better representations of interannual,intraseasonal,and synoptic scales variabilities.Our study offers a novel approach to correct global SST simulations and underscores its effectiveness across different time scales and primary dynamical modes.
文摘Most existing secret sharing schemes are constructed to realize generalaccess structure, which is defined in terms of authorized groups of participants, and is unable tobe applied directly to the design of intrusion tolerant system, which often concerns corruptiblegroups of participants instead of authorized ones. Instead, the generalized adversary structure,which specifies the corruptible subsets of participants, can be determined directly by exploit ofthe system setting and the attributes of all participants. In this paper an efficient secret sharingscheme realizing generalized adversary structure is proposed, and it is proved that the schemesatisfies both properties of the secret sharing scheme, i.e., the reconstruction property and theperfect property. The main features of this scheme are that it performs modular additions andsubtractions only, and each share appears in multiple share sets and is thus replicated. The formeris an advantage in terms of computational complexity, and the latter is an advantage when recoveryof some corrupted participants is necessary. So our scheme can achieve lower computation cost andhigher availability. Some reduction on the scheme is also done finally, based on an equivalencerelation defined over adversary structure. Analysis shows that reduced scheme still preserves theproperties of the original one.
基金supported by the National Natural Science Foundation of China(61771154)the Fundamental Research Funds for the Central Universities(3072022CF0601)supported by Key Laboratory of Advanced Marine Communication and Information Technology,Ministry of Industry and Information Technology,Harbin Engineering University,Harbin,China.
文摘As modern communication technology advances apace,the digital communication signals identification plays an important role in cognitive radio networks,the communication monitoring and management systems.AI has become a promising solution to this problem due to its powerful modeling capability,which has become a consensus in academia and industry.However,because of the data-dependence and inexplicability of AI models and the openness of electromagnetic space,the physical layer digital communication signals identification model is threatened by adversarial attacks.Adversarial examples pose a common threat to AI models,where well-designed and slight perturbations added to input data can cause wrong results.Therefore,the security of AI models for the digital communication signals identification is the premise of its efficient and credible applications.In this paper,we first launch adversarial attacks on the end-to-end AI model for automatic modulation classifi-cation,and then we explain and present three defense mechanisms based on the adversarial principle.Next we present more detailed adversarial indicators to evaluate attack and defense behavior.Finally,a demonstration verification system is developed to show that the adversarial attack is a real threat to the digital communication signals identification model,which should be paid more attention in future research.
基金supported by the National Natural Science Foundation of China under Grant(62102189,62122032,61972205)the National Social Sciences Foundation of China under Grant 2022-SKJJ-C-082+2 种基金the Natural Science Foundation of Jiangsu Province under Grant BK20200807NUDT Scientific Research Program under Grant(JS21-4,ZK21-43)Guangdong Natural Science Funds for Distinguished Young Scholar under Grant 2023B1515020041.
文摘In recent years,deep learning has been the mainstream technology for fingerprint liveness detection(FLD)tasks because of its remarkable performance.However,recent studies have shown that these deep fake fingerprint detection(DFFD)models are not resistant to attacks by adversarial examples,which are generated by the introduction of subtle perturbations in the fingerprint image,allowing the model to make fake judgments.Most of the existing adversarial example generation methods are based on gradient optimization,which is easy to fall into local optimal,resulting in poor transferability of adversarial attacks.In addition,the perturbation added to the blank area of the fingerprint image is easily perceived by the human eye,leading to poor visual quality.In response to the above challenges,this paper proposes a novel adversarial attack method based on local adaptive gradient variance for DFFD.The ridge texture area within the fingerprint image has been identified and designated as the region for perturbation generation.Subsequently,the images are fed into the targeted white-box model,and the gradient direction is optimized to compute gradient variance.Additionally,an adaptive parameter search method is proposed using stochastic gradient ascent to explore the parameter values during adversarial example generation,aiming to maximize adversarial attack performance.Experimental results on two publicly available fingerprint datasets show that ourmethod achieves higher attack transferability and robustness than existing methods,and the perturbation is harder to perceive.
基金the National Key Research and Development Program of China(2021YFB1006200)Major Science and Technology Project of Henan Province in China(221100211200).Grant was received by S.Li.
文摘Adversarial distillation(AD)has emerged as a potential solution to tackle the challenging optimization problem of loss with hard labels in adversarial training.However,fixed sample-agnostic and student-egocentric attack strategies are unsuitable for distillation.Additionally,the reliability of guidance from static teachers diminishes as target models become more robust.This paper proposes an AD method called Learnable Distillation Attack Strategies and Evolvable Teachers Adversarial Distillation(LDAS&ET-AD).Firstly,a learnable distillation attack strategies generating mechanism is developed to automatically generate sample-dependent attack strategies tailored for distillation.A strategy model is introduced to produce attack strategies that enable adversarial examples(AEs)to be created in areas where the target model significantly diverges from the teachers by competing with the target model in minimizing or maximizing the AD loss.Secondly,a teacher evolution strategy is introduced to enhance the reliability and effectiveness of knowledge in improving the generalization performance of the target model.By calculating the experimentally updated target model’s validation performance on both clean samples and AEs,the impact of distillation from each training sample and AE on the target model’s generalization and robustness abilities is assessed to serve as feedback to fine-tune standard and robust teachers accordingly.Experiments evaluate the performance of LDAS&ET-AD against different adversarial attacks on the CIFAR-10 and CIFAR-100 datasets.The experimental results demonstrate that the proposed method achieves a robust precision of 45.39%and 42.63%against AutoAttack(AA)on the CIFAR-10 dataset for ResNet-18 and MobileNet-V2,respectively,marking an improvement of 2.31%and 3.49%over the baseline method.In comparison to state-of-the-art adversarial defense techniques,our method surpasses Introspective Adversarial Distillation,the top-performing method in terms of robustness under AA attack for the CIFAR-10 dataset,with enhancements of 1.40%and 1.43%for ResNet-18 and MobileNet-V2,respectively.These findings demonstrate the effectiveness of our proposed method in enhancing the robustness of deep learning networks(DNNs)against prevalent adversarial attacks when compared to other competing methods.In conclusion,LDAS&ET-AD provides reliable and informative soft labels to one of the most promising defense methods,AT,alleviating the limitations of untrusted teachers and unsuitable AEs in existing AD techniques.We hope this paper promotes the development of DNNs in real-world trust-sensitive fields and helps ensure a more secure and dependable future for artificial intelligence systems.
基金supported in part by the Start-Up Grant-Nanyang Assistant Professorship Grant of Nanyang Technological Universitythe Agency for Science,Technology and Research(A*STAR)under Advanced Manufacturing and Engineering(AME)Young Individual Research under Grant(A2084c0156)+2 种基金the MTC Individual Research Grant(M22K2c0079)the ANR-NRF Joint Grant(NRF2021-NRF-ANR003 HM Science)the Ministry of Education(MOE)under the Tier 2 Grant(MOE-T2EP50222-0002)。
文摘While autonomous vehicles are vital components of intelligent transportation systems,ensuring the trustworthiness of decision-making remains a substantial challenge in realizing autonomous driving.Therefore,we present a novel robust reinforcement learning approach with safety guarantees to attain trustworthy decision-making for autonomous vehicles.The proposed technique ensures decision trustworthiness in terms of policy robustness and collision safety.Specifically,an adversary model is learned online to simulate the worst-case uncertainty by approximating the optimal adversarial perturbations on the observed states and environmental dynamics.In addition,an adversarial robust actor-critic algorithm is developed to enable the agent to learn robust policies against perturbations in observations and dynamics.Moreover,we devise a safety mask to guarantee the collision safety of the autonomous driving agent during both the training and testing processes using an interpretable knowledge model known as the Responsibility-Sensitive Safety Model.Finally,the proposed approach is evaluated through both simulations and experiments.These results indicate that the autonomous driving agent can make trustworthy decisions and drastically reduce the number of collisions through robust safety policies.
基金Project supported by the National Key Research and Development Program of China(Grant No.2022YFB2803900)the National Natural Science Foundation of China(Grant Nos.61974075 and 61704121)+2 种基金the Natural Science Foundation of Tianjin Municipality(Grant Nos.22JCZDJC00460 and 19JCQNJC00700)Tianjin Municipal Education Commission(Grant No.2019KJ028)Fundamental Research Funds for the Central Universities(Grant No.22JCZDJC00460).
文摘Mechanically cleaved two-dimensional materials are random in size and thickness.Recognizing atomically thin flakes by human experts is inefficient and unsuitable for scalable production.Deep learning algorithms have been adopted as an alternative,nevertheless a major challenge is a lack of sufficient actual training images.Here we report the generation of synthetic two-dimensional materials images using StyleGAN3 to complement the dataset.DeepLabv3Plus network is trained with the synthetic images which reduces overfitting and improves recognition accuracy to over 90%.A semi-supervisory technique for labeling images is introduced to reduce manual efforts.The sharper edges recognized by this method facilitate material stacking with precise edge alignment,which benefits exploring novel properties of layered-material devices that crucially depend on the interlayer twist-angle.This feasible and efficient method allows for the rapid and high-quality manufacturing of atomically thin materials and devices.
基金supported by Institute of Information&Communications Technology Planning&Evaluation(IITP)Grant funded by the Korea government,Ministry of Science and ICT(MSIT)(No.2017-0-00168,Automatic Deep Malware Analysis Technology for Cyber Threat Intelligence).
文摘Antivirus vendors and the research community employ Machine Learning(ML)or Deep Learning(DL)-based static analysis techniques for efficient identification of new threats,given the continual emergence of novel malware variants.On the other hand,numerous researchers have reported that Adversarial Examples(AEs),generated by manipulating previously detected malware,can successfully evade ML/DL-based classifiers.Commercial antivirus systems,in particular,have been identified as vulnerable to such AEs.This paper firstly focuses on conducting black-box attacks to circumvent ML/DL-based malware classifiers.Our attack method utilizes seven different perturbations,including Overlay Append,Section Append,and Break Checksum,capitalizing on the ambiguities present in the PE format,as previously employed in evasion attack research.By directly applying the perturbation techniques to PE binaries,our attack method eliminates the need to grapple with the problem-feature space dilemma,a persistent challenge in many evasion attack studies.Being a black-box attack,our method can generate AEs that successfully evade both DL-based and ML-based classifiers.Also,AEs generated by the attack method retain their executability and malicious behavior,eliminating the need for functionality verification.Through thorogh evaluations,we confirmed that the attack method achieves an evasion rate of 65.6%against well-known ML-based malware detectors and can reach a remarkable 99%evasion rate against well-known DL-based malware detectors.Furthermore,our AEs demonstrated the capability to bypass detection by 17%of vendors out of the 64 on VirusTotal(VT).In addition,we propose a defensive approach that utilizes Trend Locality Sensitive Hashing(TLSH)to construct a similarity-based defense model.Through several experiments on the approach,we verified that our defense model can effectively counter AEs generated by the perturbation techniques.In conclusion,our defense model alleviates the limitation of the most promising defense method,adversarial training,which is only effective against the AEs that are included in the training classifiers.
基金supported in part by the National Natural Science Foundation of China under grants 62202044 and 62372039Scientific and Technological Innovation Foundation of Foshan under grant BK22BF009+3 种基金Excellent Youth Team Project for the Central Universities under grant FRF-EYIT-23-01Fundamental Research Funds for the Central Universities under grants 06500103 and 06500078Guangdong Basic and Applied Basic Research Foundation under grant 2022A1515240044Beijing Natural Science Foundation under grant 4232040.
文摘Timely inspection of defects on the surfaces of wind turbine blades can effectively prevent unpredictable accidents.To this end,this study proposes a semi-supervised object-detection network based on You Only Looking Once version 4(YOLOv4).A semi-supervised structure comprising a generative adversarial network(GAN)was designed to overcome the difficulty in obtaining sufficient samples and sample labeling.In a GAN,the generator is realized by an encoder-decoder network,where the backbone of the encoder is YOLOv4 and the decoder comprises inverse convolutional layers.Partial features from the generator are passed to the defect detection network.Deploying several unlabeled images can significantly improve the generalization and recognition capabilities of defect-detection models.The small-scale object detection capacity of the network can be improved by enhancing essential features in the feature map by adding the concurrent spatial and channel squeeze and excitation(scSE)attention module to the three parts of the YOLOv4 network.A balancing improvement was made to the loss function of YOLOv4 to overcome the imbalance problem of the defective species.The results for both the single-and multi-category defect datasets show that the improved model can make good use of the features of the unlabeled images.The accuracy of wind turbine blade defect detection also has a significant advantage over classical object detection algorithms,including faster R-CNN and DETR.
基金Subjects funded by the National Natural Science Foundation of China(Nos.62275216 and 61775181)the Natural Science Basic Research Programme of Shaanxi Province-Major Basic Research Special Project(Nos.S2018-ZC-TD-0061 and TZ0393)the Special Project for the Development of National Key Scientific Instruments and Equipment No.(51927804).
文摘Deep learning is capable of greatly promoting the progress of super-resolution imaging technology in terms of imaging and reconstruction speed,imaging resolution,and imagingflux.This paper proposes a deep neural network based on a generative adversarial network(GAN).The generator employs a U-Net-based network,which integrates Dense Net for the downsampling component.The proposed method has excellent properties,for example,the network model is trained with several different datasets of biological structures;the trained model can improve the imaging resolution of different microscopy imaging modalities such as confocal imaging and wide-field imaging;and the model demonstrates a generalized ability to improve the resolution of different biological structures even out of the datasets.In addition,experimental results showed that the method improved the resolution of caveolin-coated pits(CCPs)structures from 264 nm to 138 nm,a 1.91-fold increase,and nearly doubled the resolution of DNA molecules imaged while being transported through microfluidic channels.
基金supported by National Natural Science Foundation of China(Nos.11905028,12105040)Scientific Research Project of Education Department of Jilin Province(No.JJKH20231294KJ)。
文摘Neutron radiography is a crucial nondestructive testing technology widely used in the aerospace,military,and nuclear industries.However,because of the physical limitations of neutron sources and collimators,the resulting neutron radiographic images inevitably exhibit multiple distortions,including noise,geometric unsharpness,and white spots.Furthermore,these distortions are particularly significant in compact neutron radiography systems with low neutron fluxes.Therefore,in this study,we devised a multi-distortion suppression network that employs a modified generative adversarial network to improve the quality of degraded neutron radiographic images.Real neutron radiographic image datasets with various types and levels of distortion were built for the first time as multi-distortion suppression datasets.Thereafter,the coordinate attention mechanism was incorporated into the backbone network to augment the capability of the proposed network to learn the abstract relationship between ideally clear and degraded images.Extensive experiments were performed;the results show that the proposed method can effectively suppress multiple distortions in real neutron radiographic images and achieve state-of-theart perceptual visual quality,thus demonstrating its application potential in neutron radiography.
基金funded by King Saud University through Researchers Supporting Program Number (RSP2024R499).
文摘The healthcare data requires accurate disease detection analysis,real-timemonitoring,and advancements to ensure proper treatment for patients.Consequently,Machine Learning methods are widely utilized in Smart Healthcare Systems(SHS)to extract valuable features fromheterogeneous and high-dimensional healthcare data for predicting various diseases and monitoring patient activities.These methods are employed across different domains that are susceptible to adversarial attacks,necessitating careful consideration.Hence,this paper proposes a crossover-based Multilayer Perceptron(CMLP)model.The collected samples are pre-processed and fed into the crossover-based multilayer perceptron neural network to detect adversarial attacks on themedical records of patients.Once an attack is detected,healthcare professionals are promptly alerted to prevent data leakage.The paper utilizes two datasets,namely the synthetic dataset and the University of Queensland Vital Signs(UQVS)dataset,from which numerous samples are collected.Experimental results are conducted to evaluate the performance of the proposed CMLP model,utilizing various performancemeasures such as Recall,Precision,Accuracy,and F1-score to predict patient activities.Comparing the proposed method with existing approaches,it achieves the highest accuracy,precision,recall,and F1-score.Specifically,the proposedmethod achieves a precision of 93%,an accuracy of 97%,an F1-score of 92%,and a recall of 92%.
基金supported in part by the National Natural Science Foundation of China(Grant No.62276274)Shaanxi Natural Science Foundation(Grant No.2023-JC-YB-528)Chinese aeronautical establishment(Grant No.201851U8012)。
文摘The automatic stealth task of military time-sensitive targets plays a crucial role in maintaining national military security and mastering battlefield dynamics in military applications.We propose a novel Military Time-sensitive Targets Stealth Network via Real-time Mask Generation(MTTSNet).According to our knowledge,this is the first technology to automatically remove military targets in real-time from videos.The critical steps of MTTSNet are as follows:First,we designed a real-time mask generation network based on the encoder-decoder framework,combined with the domain expansion structure,to effectively extract mask images.Specifically,the ASPP structure in the encoder could achieve advanced semantic feature fusion.The decoder stacked high-dimensional information with low-dimensional information to obtain an effective mask layer.Subsequently,the domain expansion module guided the adaptive expansion of mask images.Second,a context adversarial generation network based on gated convolution was constructed to achieve background restoration of mask positions in the original image.In addition,our method worked in an end-to-end manner.A particular semantic segmentation dataset for military time-sensitive targets has been constructed,called the Military Time-sensitive Target Masking Dataset(MTMD).The MTMD dataset experiment successfully demonstrated that this method could create a mask that completely occludes the target and that the target could be hidden in real time using this mask.We demonstrated the concealment performance of our proposed method by comparing it to a number of well-known and highly optimized baselines.
基金supported by China Southern Power Grid Technology Project under Grant 03600KK52220019(GDKJXM20220253).
文摘The convergence of Internet of Things(IoT),5G,and cloud collaboration offers tailored solutions to the rigorous demands of multi-flow integrated energy aggregation dispatch data processing.While generative adversarial networks(GANs)are instrumental in resource scheduling,their application in this domain is impeded by challenges such as convergence speed,inferior optimality searching capability,and the inability to learn from failed decision making feedbacks.Therefore,a cloud-edge collaborative federated GAN-based communication and computing resource scheduling algorithm with long-term constraint violation sensitiveness is proposed to address these challenges.The proposed algorithm facilitates real-time,energy-efficient data processing by optimizing transmission power control,data migration,and computing resource allocation.It employs federated learning for global parameter aggregation to enhance GAN parameter updating and dynamically adjusts GAN learning rates and global aggregation weights based on energy consumption constraint violations.Simulation results indicate that the proposed algorithm effectively reduces data processing latency,energy consumption,and convergence time.
基金supported in part by the National Natural Science Foundation for Distinguished Young Scholar 61825104in part by the National Natural Science Foundation of China under Grant 62201582+4 种基金in part by the National Nature Science Foundation of China under Grants 62101450in part by the Key R&D Plan of Shaan Xi Province Grants 2023YBGY037in part by National Key R&D Program of China(2022YFC3301300)in part by the Natural Science Basic Research Program of Shaanxi under Grant 2022JQ-632in part by Innovative Cultivation Project of School of Information and Communication of National University of Defense Technology under Grant YJKT-ZD-2202。
文摘In this paper,we study the covert performance of the downlink low earth orbit(LEO)satellite communication,where the unmanned aerial vehicle(UAV)is employed as a cooperative jammer.To maximize the covert rate of the LEO satellite transmission,a multi-objective problem is formulated to jointly optimize the UAV’s jamming power and trajectory.For practical consideration,we assume that the UAV can only have partial environmental information,and can’t know the detection threshold and exact location of the eavesdropper on the ground.To solve the multiobjective problem,we propose the data-driven generative adversarial network(DD-GAN)based method to optimize the power and trajectory of the UAV,in which the sample data is collected by using genetic algorithm(GA).Simulation results show that the jamming solution of UAV generated by DD-GAN can achieve an effective trade-off between covert rate and probability of detection errors when only limited prior information is obtained.
基金Project supported by the National Natural Science Foundation of China(Grant No.62001383)。
文摘Continuous-variable quantum key distribution with a local local oscillator(LLO CVQKD)has been extensively researched due to its simplicity and security.For practical security of an LLO CVQKD system,there are two main attack modes referred to as reference pulse attack and polarization attack presently.However,there is currently no general defense strategy against such attacks,and the security of the system needs further investigation.Here,we employ a deep learning framework called generative adversarial networks(GANs)to detect both attacks.We first analyze the data in different cases,derive a feature vector as input to a GAN model,and then show the training and testing process of the GAN model for attack classification.The proposed model has two parts,a discriminator and a generator,both of which employ a convolutional neural network(CNN)to improve accuracy.Simulation results show that the proposed scheme can detect and classify attacks without reducing the secret key rate and the maximum transmission distance.It only establishes a detection model by monitoring features of the pulse without adding additional devices.
基金This work was supported by Natural Science Foundation of China(Nos.62303126,62362008,62066006,authors Zhenyong Zhang and Bin Hu,https://www.nsfc.gov.cn/,accessed on 25 July 2024)Guizhou Provincial Science and Technology Projects(No.ZK[2022]149,author Zhenyong Zhang,https://kjt.guizhou.gov.cn/,accessed on 25 July 2024)+1 种基金Guizhou Provincial Research Project(Youth)forUniversities(No.[2022]104,author Zhenyong Zhang,https://jyt.guizhou.gov.cn/,accessed on 25 July 2024)GZU Cultivation Project of NSFC(No.[2020]80,author Zhenyong Zhang,https://www.gzu.edu.cn/,accessed on 25 July 2024).
文摘With the widespread use of machine learning(ML)technology,the operational efficiency and responsiveness of power grids have been significantly enhanced,allowing smart grids to achieve high levels of automation and intelligence.However,tree ensemble models commonly used in smart grids are vulnerable to adversarial attacks,making it urgent to enhance their robustness.To address this,we propose a robustness enhancement method that incorporates physical constraints into the node-splitting decisions of tree ensembles.Our algorithm improves robustness by developing a dataset of adversarial examples that comply with physical laws,ensuring training data accurately reflects possible attack scenarios while adhering to physical rules.In our experiments,the proposed method increased robustness against adversarial attacks by 100%when applied to real grid data under physical constraints.These results highlight the advantages of our method in maintaining efficient and secure operation of smart grids under adversarial conditions.
基金the Key JCJQ Program of China:2020-JCJQ-ZD-021-00 and 2020-JCJQ-ZD-024-12.
文摘Website fingerprinting,also known asWF,is a traffic analysis attack that enables local eavesdroppers to infer a user’s browsing destination,even when using the Tor anonymity network.While advanced attacks based on deep neural network(DNN)can performfeature engineering and attain accuracy rates of over 98%,research has demonstrated thatDNNis vulnerable to adversarial samples.As a result,many researchers have explored using adversarial samples as a defense mechanism against DNN-based WF attacks and have achieved considerable success.However,these methods suffer from high bandwidth overhead or require access to the target model,which is unrealistic.This paper proposes CMAES-WFD,a black-box WF defense based on adversarial samples.The process of generating adversarial examples is transformed into a constrained optimization problem solved by utilizing the Covariance Matrix Adaptation Evolution Strategy(CMAES)optimization algorithm.Perturbations are injected into the local parts of the original traffic to control bandwidth overhead.According to the experiment results,CMAES-WFD was able to significantly decrease the accuracy of Deep Fingerprinting(DF)and VarCnn to below 8.3%and the bandwidth overhead to a maximum of only 14.6%and 20.5%,respectively.Specially,for Automated Website Fingerprinting(AWF)with simple structure,CMAES-WFD reduced the classification accuracy to only 6.7%and the bandwidth overhead to less than 7.4%.Moreover,it was demonstrated that CMAES-WFD was robust against adversarial training to a certain extent.
基金Project supported by the Natural Science Foundation of Shandong Province,China (Grant No.ZR2021MF049)Joint Fund of Natural Science Foundation of Shandong Province (Grant Nos.ZR2022LLZ012 and ZR2021LLZ001)。
文摘Readout errors caused by measurement noise are a significant source of errors in quantum circuits,which severely affect the output results and are an urgent problem to be solved in noisy-intermediate scale quantum(NISQ)computing.In this paper,we use the bit-flip averaging(BFA)method to mitigate frequent readout errors in quantum generative adversarial networks(QGAN)for image generation,which simplifies the response matrix structure by averaging the qubits for each random bit-flip in advance,successfully solving problems with high cost of measurement for traditional error mitigation methods.Our experiments were simulated in Qiskit using the handwritten digit image recognition dataset under the BFA-based method,the Kullback-Leibler(KL)divergence of the generated images converges to 0.04,0.05,and 0.1 for readout error probabilities of p=0.01,p=0.05,and p=0.1,respectively.Additionally,by evaluating the fidelity of the quantum states representing the images,we observe average fidelity values of 0.97,0.96,and 0.95 for the three readout error probabilities,respectively.These results demonstrate the robustness of the model in mitigating readout errors and provide a highly fault tolerant mechanism for image generation models.
基金supported in part by the Science and Technology Development Fund,Macao S.A.R(FDCT)0028/2023/RIA1,in part by Leading Talents in Gusu Innovation and Entrepreneurship Grant ZXL2023170in part by the TCL Science and Technology Innovation Fund under Grant D5140240118in part by the Guangdong Basic and Applied Basic Research Foundation under Grant 2021A1515110079.
文摘Generative adversarial networks(GANs)with gaming abilities have been widely applied in image generation.However,gamistic generators and discriminators may reduce the robustness of the obtained GANs in image generation under varying scenes.Enhancing the relation of hierarchical information in a generation network and enlarging differences of different network architectures can facilitate more structural information to improve the generation effect for image generation.In this paper,we propose an enhanced GAN via improving a generator for image generation(EIGGAN).EIGGAN applies a spatial attention to a generator to extract salient information to enhance the truthfulness of the generated images.Taking into relation the context account,parallel residual operations are fused into a generation network to extract more structural information from the different layers.Finally,a mixed loss function in a GAN is exploited to make a tradeoff between speed and accuracy to generate more realistic images.Experimental results show that the proposed method is superior to popular methods,i.e.,Wasserstein GAN with gradient penalty(WGAN-GP)in terms of many indexes,i.e.,Frechet Inception Distance,Learned Perceptual Image Patch Similarity,Multi-Scale Structural Similarity Index Measure,Kernel Inception Distance,Number of Statistically-Different Bins,Inception Score and some visual images for image generation.