This paper presents an analytical solution for the thermoelastic stress in a typical in-plane's thin-film micro- thermoelectric cooling device under different operating con- ditions. The distributions of the permissi...This paper presents an analytical solution for the thermoelastic stress in a typical in-plane's thin-film micro- thermoelectric cooling device under different operating con- ditions. The distributions of the permissible temperature fields in multilayered thin-films are analytically obtained, and the characteristics, including maximum temperature dif- ference and maximum refrigerating output of the thermo- electric device, are discussed for two operating conditions. Analytical expressions of the thermoelastic stresses in the layered thermoelectric thin-films induced by the tempera- ture difference are formulated based on the theory of mul- tilayer system. The results demonstrate that, the geometric dimension is a significant factor which remarkably affects the thermoelastic stresses. The stress distributions in layers of semiconductor thermoelements, insulating and support- ing membrane show distinctly different features. The present work may profitably guide the optimization design of high- efficiency micro-thermoelectric cooling devices.展开更多
The reformation of (Bi,Pb)-2223 from the liquid or melt is very important for a melting process of (Bi,Pb)-2223 tape. By combination of quenching experiment with X-ray diffraction (XRD) analysis, the effect of cooling...The reformation of (Bi,Pb)-2223 from the liquid or melt is very important for a melting process of (Bi,Pb)-2223 tape. By combination of quenching experiment with X-ray diffraction (XRD) analysis, the effect of cooling rate on the evolution of three superconducting phases in the (Bi,Pb)-2223 core of Ag-sheathed tape was investigated. The results show that (Bi,Pb)-2223 reformation from the melt seems to experience different routes during slowly cooling at different rates. One is that (Bi,Pb)-2223 phase reformed directly from the melt, and no Bi-2212 participate in this process. The other is that (Bi,Pb)-2223 is converted from the intermediate product, Bi-2212, which formed from the melt during the first cooling stage. Due to the inherent sluggish formation kinetics of (Bi,Pb)-2223 from Bi-2212, only partial (Bi,Pb)-2223 can finally be reformed with the second route.展开更多
The heat transfer performance of the phase change materials used in free cooling and air conditioning applications is low,due to the poor thermal conductivity of the materials.The recent phenomenal advancement in nano...The heat transfer performance of the phase change materials used in free cooling and air conditioning applications is low,due to the poor thermal conductivity of the materials.The recent phenomenal advancement in nano technology provides an opportunity for an appreciable enhancement in the thermal conductivity of the phase change materials.In order to explore the possibilities of using nano technology for various applications,a detailed parametric study is carried out,to analyse the heat transfer enhancement potential with the thermal conductivity of the conventional phase change materials and nano enhanced phase change materials under various flow conditions of the heat transfer fluid.Initially,the theoretical equation,used to determine the time for outward cylindrical solidification of the phase change material,is validated with the experimental results.It is inferred from the parametric studies,that for paraffinic phase change materials with air as the heat transfer fluid,the first step should be to increase the heat transfer coefficient to the maximum extent,before making any attempt to increase the thermal conductivity of the phase change materials,with the addition of nano particles.When water is used as the phase change material,the addition of nano particles is recommended to achieve better heat transfer,when a liquid is used as the heat transfer fluid.展开更多
We revisit the XMM-Newton observation of the galaxy cluster Abell 1650 with a deprojection technique. We find that the radial deprojected spectra of Abell 1650 can be marginally fitted by a single-temperature model. I...We revisit the XMM-Newton observation of the galaxy cluster Abell 1650 with a deprojection technique. We find that the radial deprojected spectra of Abell 1650 can be marginally fitted by a single-temperature model. In order to study the properties of the central gas, we fit the spectra of the central two regions with a two- temperature model. The fits then become significantly better and the cool gas about 1~2 keV can be connected with the gas cooling. Fitting the central spectrum (r≤1′) by using a cooling flow model with an isothermal component yields a small mass deposition rate of 10-7^+11 M. yr^-1, while the standard cooling flow model can not fit this spectrum satisfactorily except that there exists a cut-off temperature having a level of about 3 keV. From the isothermal model we derive the deprojected electron density profile ne(r), and then together with the deprojected temperature profile the total mass and gas mass fraction of cluster are also determined. We compare the properties of Abell 1650 with those of Abell 1835 (a large cooling flow cluster) and some other clusters, to explore the difference in properties between large and small cooling flow cluster, and what causes the difference in the cooling flow of different clusters. It has been shown that Abell 1835 has a steeper potential well and thus a higher electron density and a lower temperature in its center, indicating that the shape of the gravitational potential well in central region determines the cooling flow rates of clusters. We calculate the potential, internal and radiated energies of these two clusters, and find that the gas energies in both clusters are conserved during the collapsing stage.展开更多
The pseudo-equilibrium phase diagram and continuous cooling transformation diagram of an N-containing 8% Cr roller steel were investigated by using thermodynamic calculation,differential scanning calorimetry,Ⅹ-ray d...The pseudo-equilibrium phase diagram and continuous cooling transformation diagram of an N-containing 8% Cr roller steel were investigated by using thermodynamic calculation,differential scanning calorimetry,Ⅹ-ray diffraction,expansion method,and so on.Under equilibrium conditions,the main carbonitrides are MX,M7C3,and M23C6 types.The measured Ac1,Ac3,start temperature of martensitic transformation,and M7C3 transformation temperatures are 811,855,324,and 1100 ℃,respectively.Bainite appears at cooling rates ranging from 0.5 to 5 ℃/s and ferrite forms at grain boundaries at a cooling rate lower than 0.5 ℃/s.Finally,the effects of adding N and lowering the C content on workability and mechanical properties of common 8%Cr steel were discussed.展开更多
In order to further optimize welding process of Nb-Ti-Mo microalloyed steel, welding thermal cycles on coarse-grained heat-affected zone (CGHAZ) of welded joints were simulated using Gleeble 1500. The microstructure...In order to further optimize welding process of Nb-Ti-Mo microalloyed steel, welding thermal cycles on coarse-grained heat-affected zone (CGHAZ) of welded joints were simulated using Gleeble 1500. The microstructure and low-temperature impact fracture were investigated using a scanning electron microscope and a pendulum impact machine, respectively. Moreover, the relationship between cooling time ts/5 and the microstructure of CGHAZ was discussed, and the effect of microstructure on impact toughness was also studied. As cooling time increased, martensite fraction decreased from 97.8% (3 s) to 3.0% (60 s). The fraction of martensite/austenite (M/A) constituent increased from 2.2% (3 s) to 39.0% (60 s), its shape changed from granular to strip, and the maximum length increased from 2.4 μm (3 s) to 7.0 μm (60 s). As cooling time increased, the prior austenite grain size increased from 34.0 μm (3 s) to 49.0 gm (60 s), the impact absorption energy reduced from 101.8 J (5 s) to 7.2 J (60 s), and the fracture mechanism changed from quasi-cleavage fracture to cleavage fracture. The decreased toughness of CGHAZ was due to the reduction of lath martensite-content, coarsening of original austenite grain, and increase and coarsening of M/A constituent. The heat input was controlled under 7 kJ cm-1 during actual welding for these steels.展开更多
基金supported by the National Basic Research Program of China(2007CB607506)the Fok Ying-Tong Education Foundation for Young Teachers in the Higher Education Institutions of China(111005)the Foundation for Innovative Research Groups of the National Natural Science Foundation of China(11121202)
文摘This paper presents an analytical solution for the thermoelastic stress in a typical in-plane's thin-film micro- thermoelectric cooling device under different operating con- ditions. The distributions of the permissible temperature fields in multilayered thin-films are analytically obtained, and the characteristics, including maximum temperature dif- ference and maximum refrigerating output of the thermo- electric device, are discussed for two operating conditions. Analytical expressions of the thermoelastic stresses in the layered thermoelectric thin-films induced by the tempera- ture difference are formulated based on the theory of mul- tilayer system. The results demonstrate that, the geometric dimension is a significant factor which remarkably affects the thermoelastic stresses. The stress distributions in layers of semiconductor thermoelements, insulating and support- ing membrane show distinctly different features. The present work may profitably guide the optimization design of high- efficiency micro-thermoelectric cooling devices.
文摘The reformation of (Bi,Pb)-2223 from the liquid or melt is very important for a melting process of (Bi,Pb)-2223 tape. By combination of quenching experiment with X-ray diffraction (XRD) analysis, the effect of cooling rate on the evolution of three superconducting phases in the (Bi,Pb)-2223 core of Ag-sheathed tape was investigated. The results show that (Bi,Pb)-2223 reformation from the melt seems to experience different routes during slowly cooling at different rates. One is that (Bi,Pb)-2223 phase reformed directly from the melt, and no Bi-2212 participate in this process. The other is that (Bi,Pb)-2223 is converted from the intermediate product, Bi-2212, which formed from the melt during the first cooling stage. Due to the inherent sluggish formation kinetics of (Bi,Pb)-2223 from Bi-2212, only partial (Bi,Pb)-2223 can finally be reformed with the second route.
文摘The heat transfer performance of the phase change materials used in free cooling and air conditioning applications is low,due to the poor thermal conductivity of the materials.The recent phenomenal advancement in nano technology provides an opportunity for an appreciable enhancement in the thermal conductivity of the phase change materials.In order to explore the possibilities of using nano technology for various applications,a detailed parametric study is carried out,to analyse the heat transfer enhancement potential with the thermal conductivity of the conventional phase change materials and nano enhanced phase change materials under various flow conditions of the heat transfer fluid.Initially,the theoretical equation,used to determine the time for outward cylindrical solidification of the phase change material,is validated with the experimental results.It is inferred from the parametric studies,that for paraffinic phase change materials with air as the heat transfer fluid,the first step should be to increase the heat transfer coefficient to the maximum extent,before making any attempt to increase the thermal conductivity of the phase change materials,with the addition of nano particles.When water is used as the phase change material,the addition of nano particles is recommended to achieve better heat transfer,when a liquid is used as the heat transfer fluid.
基金Supported by the National Natural Science Foundation of China.
文摘We revisit the XMM-Newton observation of the galaxy cluster Abell 1650 with a deprojection technique. We find that the radial deprojected spectra of Abell 1650 can be marginally fitted by a single-temperature model. In order to study the properties of the central gas, we fit the spectra of the central two regions with a two- temperature model. The fits then become significantly better and the cool gas about 1~2 keV can be connected with the gas cooling. Fitting the central spectrum (r≤1′) by using a cooling flow model with an isothermal component yields a small mass deposition rate of 10-7^+11 M. yr^-1, while the standard cooling flow model can not fit this spectrum satisfactorily except that there exists a cut-off temperature having a level of about 3 keV. From the isothermal model we derive the deprojected electron density profile ne(r), and then together with the deprojected temperature profile the total mass and gas mass fraction of cluster are also determined. We compare the properties of Abell 1650 with those of Abell 1835 (a large cooling flow cluster) and some other clusters, to explore the difference in properties between large and small cooling flow cluster, and what causes the difference in the cooling flow of different clusters. It has been shown that Abell 1835 has a steeper potential well and thus a higher electron density and a lower temperature in its center, indicating that the shape of the gravitational potential well in central region determines the cooling flow rates of clusters. We calculate the potential, internal and radiated energies of these two clusters, and find that the gas energies in both clusters are conserved during the collapsing stage.
基金Sponsored by the Natural Science Foundation of Hebei Province for Distinguished Young Scholars(Grant No.E2011203131)the Natural Science Foundation-Steel and Iron Foundation of Hebei Province(Grant No.E2013203110)
文摘The pseudo-equilibrium phase diagram and continuous cooling transformation diagram of an N-containing 8% Cr roller steel were investigated by using thermodynamic calculation,differential scanning calorimetry,Ⅹ-ray diffraction,expansion method,and so on.Under equilibrium conditions,the main carbonitrides are MX,M7C3,and M23C6 types.The measured Ac1,Ac3,start temperature of martensitic transformation,and M7C3 transformation temperatures are 811,855,324,and 1100 ℃,respectively.Bainite appears at cooling rates ranging from 0.5 to 5 ℃/s and ferrite forms at grain boundaries at a cooling rate lower than 0.5 ℃/s.Finally,the effects of adding N and lowering the C content on workability and mechanical properties of common 8%Cr steel were discussed.
基金This work was financially supported by the National Natural Science Foundation of China (No. 51775102), Open Research Fund from the State Key Laboratory of Roiling and Automation, Northeastern University (No. 2016005) and Project Funded by China Postdoctoral Science Foundation (No. 2016M601877).
文摘In order to further optimize welding process of Nb-Ti-Mo microalloyed steel, welding thermal cycles on coarse-grained heat-affected zone (CGHAZ) of welded joints were simulated using Gleeble 1500. The microstructure and low-temperature impact fracture were investigated using a scanning electron microscope and a pendulum impact machine, respectively. Moreover, the relationship between cooling time ts/5 and the microstructure of CGHAZ was discussed, and the effect of microstructure on impact toughness was also studied. As cooling time increased, martensite fraction decreased from 97.8% (3 s) to 3.0% (60 s). The fraction of martensite/austenite (M/A) constituent increased from 2.2% (3 s) to 39.0% (60 s), its shape changed from granular to strip, and the maximum length increased from 2.4 μm (3 s) to 7.0 μm (60 s). As cooling time increased, the prior austenite grain size increased from 34.0 μm (3 s) to 49.0 gm (60 s), the impact absorption energy reduced from 101.8 J (5 s) to 7.2 J (60 s), and the fracture mechanism changed from quasi-cleavage fracture to cleavage fracture. The decreased toughness of CGHAZ was due to the reduction of lath martensite-content, coarsening of original austenite grain, and increase and coarsening of M/A constituent. The heat input was controlled under 7 kJ cm-1 during actual welding for these steels.