The influence of polycarboxylic-type admixture on the strength of autoclaved aerated concrete(AAC) was investigated. The flexural strength and compressive strength of AAC with polycarboxylic admixture(PA) were tes...The influence of polycarboxylic-type admixture on the strength of autoclaved aerated concrete(AAC) was investigated. The flexural strength and compressive strength of AAC with polycarboxylic admixture(PA) were tested. The microstructure of AAC reinforced by PA was analyzed using scanning electron microscopic(SEM) methods. The crystal structure analysis of AAC with PA was also carried out using X-ray diffraction(XRD). The results showed that the compressive strength and flexural strength of AAC were increased by 43.9% and 42.8%, respectively, when 1.5wt% of PA was mixed. In addition, the dosage of admixture influenced the reinforcing effect. Admixture affected pore structure and surface characteristic of the products in autoclaved curing process and improved the formation of high crystallite tobermorite which led to the enhancement of the compressive and flexural strength of AAC.展开更多
We experimentally studied the interaction between pozzolanic material(fly ash) and dehydrated autoclaved aerated concrete(DAAC). The DAAC powder was obtained by grinding aerated concrete waste to particles fi ner ...We experimentally studied the interaction between pozzolanic material(fly ash) and dehydrated autoclaved aerated concrete(DAAC). The DAAC powder was obtained by grinding aerated concrete waste to particles fi ner than 75μm and was then heated to temperatures up to 900 ℃. New cementitious material was prepared by proportioning fly ash and DAAC, named as AF. X-ray diffraction(XRD) was employed to identify the crystalline phases of DAAC before and after rehydration. The hydration process of AF was analyzed by the heat of hydration and non-evaporable water content(Wn). The experimental results show that the highest reactivity of DAAC can be obtained by calcining the powder at 700 ℃ and the dehydrated products are mainly β-C2 S and CaO. The cumulative heat of hydration and Wn was found to be strongly dependent on the replacement level of fl y ash, increasing the replacement level of fl y ash lowered them in AF. The strength contribution rates on pozzolanic effect of fl y ash in AF are always negative, showing a contrary tendency of that of cement-fl y ash system.展开更多
The associated MgO in limestone is believed to affect the volume stability of cementitious materials at room tem-perature,which limits the utilization of low grade limestone.In this study,MgO was used as an alkali act...The associated MgO in limestone is believed to affect the volume stability of cementitious materials at room tem-perature,which limits the utilization of low grade limestone.In this study,MgO was used as an alkali activator instead of partial CaO to prepare the aerated concrete under hydrother mal conditions.The expansion process was studied to evaluate the influence of the raw materials on the gas forming stability of the slurry.The pore structure(porosity,pore size and its distribution)was analyzed by the image method.The physic mechanical properties(density,strength,thermal properties)of concrete with the addition of MgO were comprehensively investigated.Besides,the mineral compositions and morphology of the hydration products were analyzed to demonstrate the infuence mechanism of MgO on the mechanical properties.Experimental results show that the final expansion rate of the slurry decreases with MgO content.A reasonable MgO content,ie,MgO/(MgO+CaO)<20%,con-tributes to improve the compressive strength,attributing to an increased reaction rate to C-S-H gel and tobermor-ite.The addition of MgO causes the thermal conductivity and specific heat to increase.The pore structure is mainly related to the amount of air entraining agent.This study has a significance for the further utilization of magnesium-rich carbonates in the autoclaved building products.展开更多
基金Funded by the Fundamental Research Funds for the Central Universities(No.2242016K41003)
文摘The influence of polycarboxylic-type admixture on the strength of autoclaved aerated concrete(AAC) was investigated. The flexural strength and compressive strength of AAC with polycarboxylic admixture(PA) were tested. The microstructure of AAC reinforced by PA was analyzed using scanning electron microscopic(SEM) methods. The crystal structure analysis of AAC with PA was also carried out using X-ray diffraction(XRD). The results showed that the compressive strength and flexural strength of AAC were increased by 43.9% and 42.8%, respectively, when 1.5wt% of PA was mixed. In addition, the dosage of admixture influenced the reinforcing effect. Admixture affected pore structure and surface characteristic of the products in autoclaved curing process and improved the formation of high crystallite tobermorite which led to the enhancement of the compressive and flexural strength of AAC.
基金Funded by the"863"National High-tech Research and Development Program of China(No.2012AA06A112)
文摘We experimentally studied the interaction between pozzolanic material(fly ash) and dehydrated autoclaved aerated concrete(DAAC). The DAAC powder was obtained by grinding aerated concrete waste to particles fi ner than 75μm and was then heated to temperatures up to 900 ℃. New cementitious material was prepared by proportioning fly ash and DAAC, named as AF. X-ray diffraction(XRD) was employed to identify the crystalline phases of DAAC before and after rehydration. The hydration process of AF was analyzed by the heat of hydration and non-evaporable water content(Wn). The experimental results show that the highest reactivity of DAAC can be obtained by calcining the powder at 700 ℃ and the dehydrated products are mainly β-C2 S and CaO. The cumulative heat of hydration and Wn was found to be strongly dependent on the replacement level of fl y ash, increasing the replacement level of fl y ash lowered them in AF. The strength contribution rates on pozzolanic effect of fl y ash in AF are always negative, showing a contrary tendency of that of cement-fl y ash system.
基金This work is financially supported by National Natural Science Foundation of China(52002245)Natural Science Foundation of Guangdong(Nos.2019A1515012172,2021A1515010671)+3 种基金Key Platform and Major Scientific Research Project of Guangdong(No.2018KQNCX232)Science and Technology Plan Project of Shaoguan(Nos.2019sn057,210726194533404)Scientific Research Projects of Shaoguan University(SY2020KJ12,SY2020KJ02,408-99000623,408-230083990402)Innovation and Entrepreneurship Program for College Students(S202110576030).
文摘The associated MgO in limestone is believed to affect the volume stability of cementitious materials at room tem-perature,which limits the utilization of low grade limestone.In this study,MgO was used as an alkali activator instead of partial CaO to prepare the aerated concrete under hydrother mal conditions.The expansion process was studied to evaluate the influence of the raw materials on the gas forming stability of the slurry.The pore structure(porosity,pore size and its distribution)was analyzed by the image method.The physic mechanical properties(density,strength,thermal properties)of concrete with the addition of MgO were comprehensively investigated.Besides,the mineral compositions and morphology of the hydration products were analyzed to demonstrate the infuence mechanism of MgO on the mechanical properties.Experimental results show that the final expansion rate of the slurry decreases with MgO content.A reasonable MgO content,ie,MgO/(MgO+CaO)<20%,con-tributes to improve the compressive strength,attributing to an increased reaction rate to C-S-H gel and tobermor-ite.The addition of MgO causes the thermal conductivity and specific heat to increase.The pore structure is mainly related to the amount of air entraining agent.This study has a significance for the further utilization of magnesium-rich carbonates in the autoclaved building products.