期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Real-Time Mosaic Method of Aerial Video Based on Two-Stage Key Frame Selection Method
1
作者 Minwen Yuan Yonghong Long Xin Li 《Open Journal of Applied Sciences》 2024年第4期1008-1021,共14页
A two-stage automatic key frame selection method is proposed to enhance stitching speed and quality for UAV aerial videos. In the first stage, to reduce redundancy, the overlapping rate of the UAV aerial video sequenc... A two-stage automatic key frame selection method is proposed to enhance stitching speed and quality for UAV aerial videos. In the first stage, to reduce redundancy, the overlapping rate of the UAV aerial video sequence within the sampling period is calculated. Lagrange interpolation is used to fit the overlapping rate curve of the sequence. An empirical threshold for the overlapping rate is then applied to filter candidate key frames from the sequence. In the second stage, the principle of minimizing remapping spots is used to dynamically adjust and determine the final key frame close to the candidate key frames. Comparative experiments show that the proposed method significantly improves stitching speed and accuracy by more than 40%. 展开更多
关键词 UAV aerial Video Image Stiching Key Frame Selection Overlapping Rate Remap Error
下载PDF
Road boundary estimation to improve vehicle detection and tracking in UAV video 被引量:1
2
作者 张立业 彭仲仁 +1 位作者 李立 王华 《Journal of Central South University》 SCIE EI CAS 2014年第12期4732-4741,共10页
Video processing is one challenge in collecting vehicle trajectories from unmanned aerial vehicle(UAV) and road boundary estimation is one way to improve the video processing algorithms. However, current methods do no... Video processing is one challenge in collecting vehicle trajectories from unmanned aerial vehicle(UAV) and road boundary estimation is one way to improve the video processing algorithms. However, current methods do not work well for low volume road, which is not well-marked and with noises such as vehicle tracks. A fusion-based method termed Dempster-Shafer-based road detection(DSRD) is proposed to address this issue. This method detects road boundary by combining multiple information sources using Dempster-Shafer theory(DST). In order to test the performance of the proposed method, two field experiments were conducted, one of which was on a highway partially covered by snow and another was on a dense traffic highway. The results show that DSRD is robust and accurate, whose detection rates are 100% and 99.8% compared with manual detection results. Then, DSRD is adopted to improve UAV video processing algorithm, and the vehicle detection and tracking rate are improved by 2.7% and 5.5%,respectively. Also, the computation time has decreased by 5% and 8.3% for two experiments, respectively. 展开更多
关键词 road boundary detection vehicle detection and tracking airborne video unmanned aerial vehicle Dempster-Shafer theory
下载PDF
Moving object detection in aerial video based on spatiotemporal saliency 被引量:18
3
作者 Shen Hao Li Shuxiao +2 位作者 Zhu Chengfei Chang Hongxing Zhang Jinglan 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2013年第5期1211-1217,共7页
In this paper, the problem of moving object detection in aerial video is addressed. While motion cues have been extensively exploited in the literature, how to use spatial information is still an open problem. To deal... In this paper, the problem of moving object detection in aerial video is addressed. While motion cues have been extensively exploited in the literature, how to use spatial information is still an open problem. To deal with this issue, we propose a novel hierarchical moving target detection method based on spatiotemporal saliency. Temporal saliency is used to get a coarse segmentation, and spatial saliency is extracted to obtain the object's appearance details in candidate motion regions. Finally, by combining temporal and spatial saliency information, we can get refined detection results. Additionally, in order to give a full description of the object distribution, spatial saliency is detected in both pixel and region levels based on local contrast. Experiments conducted on the VIVID dataset show that the proposed method is efficient and accurate. 展开更多
关键词 aerial video Computer vision Object detection SALIENCY Unmanned aerial vehicles
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部