[Objective] The aim was to study on effect of sludge from different sources on biogas yield efficiency through anaerobic digestion of corn straw. [Method] The present research studied on daily biogas yield and the acc...[Objective] The aim was to study on effect of sludge from different sources on biogas yield efficiency through anaerobic digestion of corn straw. [Method] The present research studied on daily biogas yield and the accumulated biogas amount through anaerobic digestion of corn straw and sludges from four sources. [Result] The accumulated biogas yields produced from sludges in four sources from high to low were granular sludge, river sediments, concentrated sludge and filtered sludge. The first one proved the highest at 3.73 and 56.29 L/kg VS in daily biogas yield and the accumulated biogas. [Conclusion] The research laid foundation for full utilization of straw, improvement of energy utilization and sustainable development.展开更多
Two-phase anaerobic digestion process is influenced by acid control for hydrogen production, reaction temperature, substrate detention time, sludge activity, and granular formation. Al of these technological parameter...Two-phase anaerobic digestion process is influenced by acid control for hydrogen production, reaction temperature, substrate detention time, sludge activity, and granular formation. Al of these technological parameters are directly related to success or failure of the system operation and treatment effect.展开更多
Alkaline and ultrasonic sludge disintegration can be used as the pretreatment of waste activated sludge (WAS) to promote the subsequent anaerobic or aerobic digestion. In this study, different combinations of these ...Alkaline and ultrasonic sludge disintegration can be used as the pretreatment of waste activated sludge (WAS) to promote the subsequent anaerobic or aerobic digestion. In this study, different combinations of these two methods were investigated. The evaluation was based on the quantity of soluble chemical oxygen demand (SCOD) in the pretreated sludge as well as the degradation of organic matter in the subsequent aerobic digestion. For WAS samples with combined pretreatment, the released COD levels were higher than those with ultrasonic or alkaline pretreatment alone. When combined with the ultrasonic treatment, NaOH treatment was more efficient than Ca(OH)2 for WAS solubilization. The COD levels released in various sequential options of combined NaOH and ultrasonic treatments were in the the following descending order: simultaneous treatment 〉 NaOH treatment followed by ultrasonic treatment 〉 ultrasonic treatment followed by NaOH treatment. For simultaneous treatment, low NaOH dosage (100 g/kg dry solid), short duration (30 min) of NaOH treatment, and low ultrasonic specific energy (7500 kJ/kg dry solid) were suitable for sludge disintegration. Using combined NaOH and ultrasonic pretreatment with optimal parameters, the degradation efficiency of organic matter was increased from 38.0% to 50.7%, which is much higher than that with ultrasonic (42.5%) or with NaOH pretreatment (43.5%) in the subsequent aerobic digestion at the same retention time.展开更多
A two-stage process has been developed for stabilization of sludge and removal of heavy metals from the secondary activated sludge with high rate of energy and time conservation. The first stage of the process involve...A two-stage process has been developed for stabilization of sludge and removal of heavy metals from the secondary activated sludge with high rate of energy and time conservation. The first stage of the process involves autoheated thermophilic aerobic digestion at 55-60℃ inoculated with less-acidophilic thermophilic sulfur-oxidizing microorganisms (ATAD). The results show that it is possible to maintain the autoheated conditions (55-60℃) in the ATAD reactor up to 24 hr, leading to reduction of 21% total solids (TS), 27% volatile solids (VS), 27% suspended solids (SS) and 33% volatile suspended solids (VSS) from the sludge. The sludge pH also decreased from 7 to 4.6 due to the activity of less-acidophilic thermophilic microorganisms. In the second stage operation, the digested sludge (pH 4.6, TS 31.6 g/L) from stage one was subjected to bioleaching in a continuous stirred tank reactor, operated at mean hydraulic retention times (HRTs) of 12, 24 and 36 hr at 30℃. An HRT of 24 hr was found to be sufficient for removal of 70% Cu, 70% Mn, 75% Ni, and 80% Zn from the sludge. In all, 39% VSS, 76% Cu, 78.2% Mn, 79.5% Ni and 84.2% Zn were removed from the sludge in both the stages.展开更多
In order to enhance the efficiency of aerobic digestion, the excess sludge was irradiated by low intensity ultrasound at a frequency of 28 kHz and acoustic intensity of 0.53 W/cm^2. The results show that the sludge st...In order to enhance the efficiency of aerobic digestion, the excess sludge was irradiated by low intensity ultrasound at a frequency of 28 kHz and acoustic intensity of 0.53 W/cm^2. The results show that the sludge stabilization without ultrasonic treatment can be achieved after 17 d of digestion, whereas the digestion time of ultrasonic groups can be cut by 3-7 d. During the same digestion elapsing, in ultrasonic groups the total volatile suspended solid removal rate is higher than that in the control group. The kinetics of aerobic digestion of excess sludge with ultrasound can also be described with first-order reaction.展开更多
Biodegradation parameters and kinetic characteristics for pre-treating waste strains of Klebsiella pneu-moniae were studied in laboratory scale with an insulated reactor by an innovative technique,autothermal thermo-p...Biodegradation parameters and kinetic characteristics for pre-treating waste strains of Klebsiella pneu-moniae were studied in laboratory scale with an insulated reactor by an innovative technique,autothermal thermo-philic aerobic digestion(ATAD) . Based on an Arrhenius-type equation,an empirical model was developed to corre-late the removal of total suspended solid(TSS) with the initial TSS concentration,influent reaction temperature,aeration rate and stirring rate. The reaction temperatures of the ATAD system could be raised from the ambient temperatures of 25 °C to a maximum temperature of 65 °C. The exponentials for the initial TSS concentration,aeration rate and stirring rate were 1.579,-0.8175 and-0.6549,respectively,and the apparent activation energy was 6.8774 kJ·mol-1. The correlation coefficient for the pre-exponential factor was 0.9223. The TSS removal effi-ciency predicted by the model was validated with an actual test,showing a maximum relative deviation of 10.79%. The new model has a good practicability.展开更多
Conventional waste management practices focusing principally on waste collection, treatment and disposal or even minimisation often prove insufficient to address resource management challenges in a sustainable manner....Conventional waste management practices focusing principally on waste collection, treatment and disposal or even minimisation often prove insufficient to address resource management challenges in a sustainable manner. Taking into account the relationship between water provision, energy security and resource efficiency, a systems approach that delivers a strong information basis and provides opportunities for resource use optimisation at various levels of application provides opportunities for synergies that could deliver real benefits when cross-sectoral solutions are applied. By-products from sewage treatment in combination with organic solid waste such as food waste can provide a valuable source of energy if managed properly and utilised effectively. This way, waste can be seen as a raw material than can be turned into a resource rather than simply be discarded. As such, AD (anaerobic digestion), the co-digestion of food waste with sewage sludge, could become a strategic and cross-sectoral solution, if carefully applied, with the potential to convey beneficial synergies for the water and the waste industries. However, barriers to the development of such systems are diverse and often interlinked. Institutional frameworks, decision making constraints, and regulatory boundaries might still appear to require an answer for three different problems, but this can be overcome if presented as just three different parts of the same answer. Such synergies could deliver economic benefits from the additional renewable energy generated and its associated incentives, and savings on costs for the infrastructure required for the exclusive digestion of food waste.展开更多
Two dry anaerobic digestions of organic solid wastes were conducted for 6 weeks in a lab-scale batch experiment for investigating the start-up performances under mesophilic and thermophilic conditions. The enzymatic a...Two dry anaerobic digestions of organic solid wastes were conducted for 6 weeks in a lab-scale batch experiment for investigating the start-up performances under mesophilic and thermophilic conditions. The enzymatic activities, i.e., β-glucosidase, N-α-benzoyl-Largininamide (BAA)-hydrolysing protease, urease and phosphatase activities were analysed. The BAA-hydrolysing protease activity during the first 2-3 weeks was low with low pH, but was enhanced later with the pH increase. β-Glucosidase activity showed the lowest values in weeks 1-2, and recovered with the increase of BAA-hydrolysing protease activity. Acetic acid dominated most of the total VFAs in thermophilic digestion, while propionate and butyrate dominated in mesophilic digestion. Thermophilic digestion was confirmed more feasible for achieving better performance against misbalance, especially during the start-up period in a dry anaerobic digestion process.展开更多
Effect of ultrasonic pretreatment on sludge dewaterability was determined and the fate of extracellular polymeric substances (EPS) matrix in mesophilic anaerobic digestion after ultrasonic pretreatment was studied. ...Effect of ultrasonic pretreatment on sludge dewaterability was determined and the fate of extracellular polymeric substances (EPS) matrix in mesophilic anaerobic digestion after ultrasonic pretreatment was studied. Characteristics of proteins (PN), polysaccharides (PS), excitation-emission matrix (EEM) fluorescence spectroscopy and molecular weight (MW) distribution of dissolved organic matters (DOM) in different EPS fractions were evaluated. The results showed that after ultrasonic pretreatment, the normalized capillary suction time (CST) decreased from 44.4 to 11.1 (sec·L)/g total suspended solids (TSS) during anaerobic digestion, indicating that sludge dewaterability was greatly improved. The normalized CST was significantly correlated with PN concentration (R2 = 0.92, p 〈 0.01) and the PN/PS ratio (R2 = 0.84, p 〈 0.01) in the loosely bound EPS (LB-EPS) fraction. Meanwhile, the average MW of DOM in the LB- EPS and tightly bound EPS (TB-EPS) fractions also had a good correlation with the normalized CST (R2 〉 0.66, p 〈 0.01). According to EEM fluorescence spectroscopy, tryptophan-like substances intensities in the slime, LB-EPS and TB-EPS fractions were correlated with the normalized CST. The organic matters in the EPS matrix played an important role in influencing sludge dewaterability.展开更多
To evaluate the influence of lactic acid on the methanogenesis, anaerobic digestion of kitchen wastes was firstly conducted in a two-phase anaerobic digestion process, and performance of two digesters fed with lactic ...To evaluate the influence of lactic acid on the methanogenesis, anaerobic digestion of kitchen wastes was firstly conducted in a two-phase anaerobic digestion process, and performance of two digesters fed with lactic acid and glucose was subsequently compared. The results showed that the lactic acid was the main fermentation products of hydrolysis-acidification stage in the two-phase anaerobic digestion process for kitchen wastes. The lactic acid concentration constituted approximately 50% of the chemical oxygen demand (COD) concentration in the hydrolysis-acidification liquid. The maximum organic loading rate was lower in the digester fed with lactic acid than that fed with glucose. Volatile fatty acids (VFAs) and COD removal were deteriorated in the methanogenic reactor fed with lactic acid compared to that fed with glucose. The specific methanogenic activity (SMA) declined to 0.343 g COD/(gVSS-d) when the COD loading were designated as 18.8 g/(L-d) in the digester fed with lactic acid. The propionic acid accumulation occurred due to the high concentration of lactic acid fed. It could be concluded that avoiding the presence of the lactic acid is necessary in the hydrolysis-acidification process for the improvement of the two-phase anaerobic digestion process of kitchen wastes.展开更多
A new anaerobic reactor, Jet-loop anaerobic fluidized bed (JLAFB), was designed for treating high-sulfate wastewater. The treatment characteristics, including the effect of influent COD/SO42 ratio and alkalinity and...A new anaerobic reactor, Jet-loop anaerobic fluidized bed (JLAFB), was designed for treating high-sulfate wastewater. The treatment characteristics, including the effect of influent COD/SO42 ratio and alkalinity and sulfide inhibition in reactors, were discussed for a JLAFB and a general anaerobic fiuidized bed (AFB) reactor used as sulfate-reducing phase and methane-producing phase, respectively, in two-phase anaerobic digestion process. The formation of granules in the two reactors was also examined. The results indicated that COD and sulfate removal had different demand of influent COD/SO4^2- ratios. When total COD removal was up to 85%, the ratio was only required up to 1.2, whereas, total sulfate removal up to 95% required it exceeding 3.0. The alkalinity in the two reactors increased linearly with the growth of influent alkalinity. Moreover, the change of influent alkalinity had no significant effect on pH and volatile fatty acids (VFA) in the two reactors. Influent alkalinity kept at 400-500 mg/L could meet the requirement of the treating process. The JLAFB reactor had great advantage in avoiding sulfide and free-H2S accumulation and toxicity inhibition on microorganisms. When sulfate loading rate was up to 8. 1 kg/(m^3.d), the sulfide and free-H2S concentrations in JLAFB reactor were 58.6 and 49.7 mg/L, respectively. Furthermore, the granules, with offwhite color, ellipse shape and diameters of 1.0-3.0 mm, could be developed in JLAFB reactor. In granules, different groups of bacteria were distributed in different layers, and some inorganic metal compounds such as Fe, Ca, Mg etc. were found.展开更多
The influence of temperature on the performance of anaerobic reactors for treating the organic fraction of municipal sohd waste (OFMSW) was studied. Batch digestion of OFMSW was carded out for 32 d at different temp...The influence of temperature on the performance of anaerobic reactors for treating the organic fraction of municipal sohd waste (OFMSW) was studied. Batch digestion of OFMSW was carded out for 32 d at different temperature (25℃, 35℃, 45℃ and 55℃) conditions for total solid concentrations (TS) 17% with the ratio of total organic carbon to nitrogen (C/N) being, 25:1 respectively, while keeping other parameters constant such as inoculum, start-up pH, reactor volume (2 L) and so on. Temperature can influence the methanogenic bacteria activity, accordingly inhibiting the OFMSW biodegradation and stabilization efficiency. Anaerobic reactors excelled at TS reduction, total volatile solid reduction, chemical oxygen demand reduction, increasing cumulative biogas production, whose rate was at temperature (35℃ and 55℃) conditions. Methane concentration in the biogas was above 65% in four reactors. In addition, the fluctuation of temperatures resulted in the biogas production variation. The data obtained indicated that temperature had a significant influence on anaerobic process.展开更多
Anaerobic co-digestion of food waste(FW) and rice straw(RS) in continuously stirred tank reactor(CSTR) at high organic loading rate(OLR) was investigated. Co-digestion studies of FW and RS with six different m...Anaerobic co-digestion of food waste(FW) and rice straw(RS) in continuously stirred tank reactor(CSTR) at high organic loading rate(OLR) was investigated. Co-digestion studies of FW and RS with six different mixing ratios were conducted at an initial volatile solid(VS) concentration of more than 3 g VS · L-1. The biogas production, methane contents, degradation efficiency of VS, chemical oxygen demand(COD) and volatile fatty acids(VFAs) were determined to evaluate the stability and performance of the system. The results showed that the co-digestion process had higher system stability and higher volumetric biogas production than mono-digestions. Increase in FW content in the feedstock could increase the methane yield and shorten retention time. The efficiency of co-digestion systems mainly relied on the mixing ratios of FW and RS to some extent. The highest methane yield was 60.55 m L· g V· S-1 · d-1 at a mass ratio(FW/RS) of 3 : 1, which was 178% and 70% higher than that of mono-digestions of FW and RS, respectively. Consequently, the anaerobic co-digestion of FW and RS could have superior stability and better performance than monodigestions in higher organic loading system.展开更多
In order to enhance the biomethane production from corn stover, choosing effective pretreatment is one of the necessary steps before starting anaerobic digestion(AD).This study was aimed to analyze the effectiveness o...In order to enhance the biomethane production from corn stover, choosing effective pretreatment is one of the necessary steps before starting anaerobic digestion(AD).This study was aimed to analyze the effectiveness of freezing–thawing with ammonia pretreatment on substance degradation and AD performance of corn stover.Three ammonia concentrations(2%, 4%, and 6%) with two different moisture contents(50% and 70%) were used to pretreat the corn stover at two temperatures(-20 ℃ and 20 ℃).The result showed that an optimum pretreatment condition for corn stover was at the temperature of -20 ℃, moisture content of 70% and ammonia concentration of 2%.Under the optimum pretreatment condition, the maximum biomethane yield reached 261 ml·(g VS)^(-1), which was 41.08% higher than that of the untreated.Under different pretreatment conditions,the highest loss of lignin at -20 ℃ with 2% ammonia concentration was 63.36% compared with the untreated.The buffer capacity of AD system was also improved after the freezing–thawing with ammonia pretreatment.Therefore, the freezing–thawing with ammonia pretreatment can be used to improve AD performance for corn stover.This study provides further insight for exploring an efficient freezing–thawing with ammonia pretreatment strategy to enhance AD performance for the practical application.展开更多
The effects of different concentrations of oxytetracycline (OTC) on the dynamics of bacterial and archaeal communities during the mesophilic anaerobic digestion (37°C) of cow manure were investigated. Before...The effects of different concentrations of oxytetracycline (OTC) on the dynamics of bacterial and archaeal communities during the mesophilic anaerobic digestion (37°C) of cow manure were investigated. Before anaerobic digestion, OTC was added to digesters at concentrations of 20, 50, and 80 mg L-1, respectively. Compared with no-antibiotic control, all methane productions underwent different levels of inhibition at different concentrations of OTC. Changes in the bacterial and archaeal communities were discussed by using PCR-denaturing gradient gel electrophoresis (DGGE). Results showed that OTC affected the richness and diversity of bacterial and archaeal communities. The bacterial genus Flavobacterium and an uncultured bacterium (JN256083.1) were detected throughout the entire process of anaerobic digestion and seemed to be the functional bacteria. Methanobrevibacter boviskoreani and an uncultured archaeon (FJ230982.1) dominated the archaeal communities during anaerobic digestion. These microorganisms may have high resistance to OTC and may play vital roles in methane production.展开更多
This study investigated the effects of soluble chemical oxygen demand(s COD),volatile fatty acids(VFAs),and microbial community on biogas production in the process of rice straw(RS)anaerobic digestion(AD).The results ...This study investigated the effects of soluble chemical oxygen demand(s COD),volatile fatty acids(VFAs),and microbial community on biogas production in the process of rice straw(RS)anaerobic digestion(AD).The results showed that the s COD concentrations and VFA production appeared the same trend,which was inversely related with that of daily biogas production.The cumulative methane yield of RS was 194.9 ml·(g VS)^-1·^-1.The modified Gompertz model is the best fit for measured methane yields of RS in the three kinetic models of first-order kinetic,Cone and modified Gompertz.Firmicutes,Bacteroidetes,and Euryarchaeota were the dominant microbial phyla throughout AD process.At the genus level,the microorganisms mainly composed of Clostridium,Vadin,Terrisporobacter,Methanosaeta,Methanobacterium,and Methanosarcina.Proteiniphilum showed strong relationship with s COD and VFA production.Clostridium and Terrisporobacter displayed relationship with biogas production.Therefore,in order to improve the stability of the AD system,the parameter changes of VFAs,s COD,and biogas yield were monitored in the RS AD process.The study can provide theoretical basis for improving the efficiency of RS AD.展开更多
Wheat straw biodegradability during anaerobic digestion was improved by treatment with potassium hydroxide (KOH) to decrease digestion time and enhance biomethane production and fertility value. KOH concentrations o...Wheat straw biodegradability during anaerobic digestion was improved by treatment with potassium hydroxide (KOH) to decrease digestion time and enhance biomethane production and fertility value. KOH concentrations of 1% (KI), 3% ([(2), 6% (K3) and 9% (l(4) were tested for wheat straw pretreatment at ambient temperature with a C:N ratio of 25:1.86% of total solids (TS), 89% of volatile solids (VS) and 22% of lignocellulose, cellulose and hemi- cellulose (LCH) (22%) were decomposed effectively with the wheat straw pretreated by 6% KOH. Enhanced bio- gas production and cumulative biomethane yield of 258 ml. (g VS)-1 were obtained increased by 45% and 41% respectively, compared with untreated wheat straw. Pretreated wheat straw digestion also yielded a digestate with higher fertilizer values potassium (l 38%), calcium (22%) and magnesium (16%). These results show that TS, VS and LCH can be effectively removed from wheat straw pretreated with KOH, improving biodegradability biomethane production and fertilizer value.展开更多
Anaerobic digestion is widely used in the treatment of industrial wastewater,excess activated sludge,municipal waste,crop straw and livestock manure,with the functions of environmental protection and energy recovery. ...Anaerobic digestion is widely used in the treatment of industrial wastewater,excess activated sludge,municipal waste,crop straw and livestock manure,with the functions of environmental protection and energy recovery. This review summarizes and evaluates the present knowledge of effects of different states of Fe( ZVI,Fe( II),Fe( III)) on hydrogen and methane production in anaerobic digestion process. The potential promotion effects of iron oxides nanoparticles( IONPs),especially magnetite nanoparticles on anaerobic digestion are also mentioned. Fe plays important role in transporting electron,stimulating bacterial growth and increasing hydrogen and methane production rate by promoting enzyme activity. Adding Fe with different morphologies and valence states in anaerobic digestion to increase biogas( hydrogen and methane) production and enhance organic matter degradation simultaneously,which has attracted many scientists' attention in recent years. Rapid progress in this area has been made over the last few years,since Fe is essential to the fermentative hydrogen and methane production,while few is known about how Fe affects the fermentative biogas production. This review is significant to maintain the stable operation of the biogas project.展开更多
The possibility of anaerobic digestion of high oil waste at high temperatures was explored,and the effects of fat concentration on biogas production via anaerobic digestion were analyzed by batch and continuous experi...The possibility of anaerobic digestion of high oil waste at high temperatures was explored,and the effects of fat concentration on biogas production via anaerobic digestion were analyzed by batch and continuous experiments successively. Besides,the response and recovery of the digestion system to the shock of high concentrations of oil were studied. The results showed that the anaerobic digestion of high oil waste could be carried out,and fat concentration had a significant effect on the anaerobic digestion. In the batch experiments,the process of anaerobic digestion could carry out only when fat concentration was 0-1. 68%,and the average methane content was 46. 42%; with the increase of fat concentration,both methane content and production rate decreased significantly,and the digestion period was extended obviously. When fat concentration exceeded 2. 52%,the anaerobic digestion failed to start,and methane could not be detected in the produced biogas. In the continuous experiments,the system could withstand a certain concentration of fat( 6 g/L),and anaerobic digestion process would be inhibited when it experienced the impact of a high oil load( 26. 7 g/L). Nevertheless,this process could recover quickly after the removal of the impact,and the system could withstand a higher fat concentration( 13 g/L) than before. Furthermore,the volume production rate of biogas was approximately 1 L/( L·d),and methane content was about 55%.展开更多
The search for alternative energy and fuels has motivated researchers to focus on renewable and sustainable means of getting them instead of relying on the conventional way of energy and fuel production. Anaerobic dig...The search for alternative energy and fuels has motivated researchers to focus on renewable and sustainable means of getting them instead of relying on the conventional way of energy and fuel production. Anaerobic digestion is a biochemical process during which complex organic matter is decomposed in absence of oxygen, by various types of anaerobic microorganisms. The process of Anaerobic digestion is appropriate for all waste water treatment systems given that the solid can be introduced to the system at an acceptable concentration. Biogas, the product of anaerobic digestion process is a clean and renewable form of energy which can be a substitute for conventional sources of energy which are causing ecological-environmental problems and at the same time depleting at a faster rate. This paper reviews the anaerobic digestion process and its complexities;it covers different stages involved in the process, the substrate used in the process, the relationship between the substrate and microorganisms and important operating parameters such as pH, temperature and loading rate.展开更多
基金National Basic Research Program of China (973 Program) (2009CB724700,2011CBA00800)National Natural Foundation of China (31101269)+4 种基金Scienc & Technology Plotform Construction Programof Jiangxi Province (2010DTZ01900)A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education InstitutionsNatural Science Foundation of Jiangsu Department of Education (07KJD350034)High-level Talents Foundation of Jiangsu University (07JDG020)Supported by International Foundation for Science (F 4930-1)~~
文摘[Objective] The aim was to study on effect of sludge from different sources on biogas yield efficiency through anaerobic digestion of corn straw. [Method] The present research studied on daily biogas yield and the accumulated biogas amount through anaerobic digestion of corn straw and sludges from four sources. [Result] The accumulated biogas yields produced from sludges in four sources from high to low were granular sludge, river sediments, concentrated sludge and filtered sludge. The first one proved the highest at 3.73 and 56.29 L/kg VS in daily biogas yield and the accumulated biogas. [Conclusion] The research laid foundation for full utilization of straw, improvement of energy utilization and sustainable development.
基金Supported by Yunnan S&T Innovation Platform Construction Project(2013DH041)National Natural Science Foundation of China(51366015)Specialized Research Fund for the Doctoral Program of Higher Education of China(20135303110001)~~
文摘Two-phase anaerobic digestion process is influenced by acid control for hydrogen production, reaction temperature, substrate detention time, sludge activity, and granular formation. Al of these technological parameters are directly related to success or failure of the system operation and treatment effect.
基金supported by the China NationalEleventh Five-Year Scientific and Technical Support Plan(No. 2006BAC02A18)
文摘Alkaline and ultrasonic sludge disintegration can be used as the pretreatment of waste activated sludge (WAS) to promote the subsequent anaerobic or aerobic digestion. In this study, different combinations of these two methods were investigated. The evaluation was based on the quantity of soluble chemical oxygen demand (SCOD) in the pretreated sludge as well as the degradation of organic matter in the subsequent aerobic digestion. For WAS samples with combined pretreatment, the released COD levels were higher than those with ultrasonic or alkaline pretreatment alone. When combined with the ultrasonic treatment, NaOH treatment was more efficient than Ca(OH)2 for WAS solubilization. The COD levels released in various sequential options of combined NaOH and ultrasonic treatments were in the the following descending order: simultaneous treatment 〉 NaOH treatment followed by ultrasonic treatment 〉 ultrasonic treatment followed by NaOH treatment. For simultaneous treatment, low NaOH dosage (100 g/kg dry solid), short duration (30 min) of NaOH treatment, and low ultrasonic specific energy (7500 kJ/kg dry solid) were suitable for sludge disintegration. Using combined NaOH and ultrasonic pretreatment with optimal parameters, the degradation efficiency of organic matter was increased from 38.0% to 50.7%, which is much higher than that with ultrasonic (42.5%) or with NaOH pretreatment (43.5%) in the subsequent aerobic digestion at the same retention time.
文摘A two-stage process has been developed for stabilization of sludge and removal of heavy metals from the secondary activated sludge with high rate of energy and time conservation. The first stage of the process involves autoheated thermophilic aerobic digestion at 55-60℃ inoculated with less-acidophilic thermophilic sulfur-oxidizing microorganisms (ATAD). The results show that it is possible to maintain the autoheated conditions (55-60℃) in the ATAD reactor up to 24 hr, leading to reduction of 21% total solids (TS), 27% volatile solids (VS), 27% suspended solids (SS) and 33% volatile suspended solids (VSS) from the sludge. The sludge pH also decreased from 7 to 4.6 due to the activity of less-acidophilic thermophilic microorganisms. In the second stage operation, the digested sludge (pH 4.6, TS 31.6 g/L) from stage one was subjected to bioleaching in a continuous stirred tank reactor, operated at mean hydraulic retention times (HRTs) of 12, 24 and 36 hr at 30℃. An HRT of 24 hr was found to be sufficient for removal of 70% Cu, 70% Mn, 75% Ni, and 80% Zn from the sludge. In all, 39% VSS, 76% Cu, 78.2% Mn, 79.5% Ni and 84.2% Zn were removed from the sludge in both the stages.
文摘In order to enhance the efficiency of aerobic digestion, the excess sludge was irradiated by low intensity ultrasound at a frequency of 28 kHz and acoustic intensity of 0.53 W/cm^2. The results show that the sludge stabilization without ultrasonic treatment can be achieved after 17 d of digestion, whereas the digestion time of ultrasonic groups can be cut by 3-7 d. During the same digestion elapsing, in ultrasonic groups the total volatile suspended solid removal rate is higher than that in the control group. The kinetics of aerobic digestion of excess sludge with ultrasound can also be described with first-order reaction.
基金Supported by the Doctoral Foundation of Northeast Dianli University (BSJXM-200814)Foundations of Bureau of Jilin Province (2008424)
文摘Biodegradation parameters and kinetic characteristics for pre-treating waste strains of Klebsiella pneu-moniae were studied in laboratory scale with an insulated reactor by an innovative technique,autothermal thermo-philic aerobic digestion(ATAD) . Based on an Arrhenius-type equation,an empirical model was developed to corre-late the removal of total suspended solid(TSS) with the initial TSS concentration,influent reaction temperature,aeration rate and stirring rate. The reaction temperatures of the ATAD system could be raised from the ambient temperatures of 25 °C to a maximum temperature of 65 °C. The exponentials for the initial TSS concentration,aeration rate and stirring rate were 1.579,-0.8175 and-0.6549,respectively,and the apparent activation energy was 6.8774 kJ·mol-1. The correlation coefficient for the pre-exponential factor was 0.9223. The TSS removal effi-ciency predicted by the model was validated with an actual test,showing a maximum relative deviation of 10.79%. The new model has a good practicability.
文摘Conventional waste management practices focusing principally on waste collection, treatment and disposal or even minimisation often prove insufficient to address resource management challenges in a sustainable manner. Taking into account the relationship between water provision, energy security and resource efficiency, a systems approach that delivers a strong information basis and provides opportunities for resource use optimisation at various levels of application provides opportunities for synergies that could deliver real benefits when cross-sectoral solutions are applied. By-products from sewage treatment in combination with organic solid waste such as food waste can provide a valuable source of energy if managed properly and utilised effectively. This way, waste can be seen as a raw material than can be turned into a resource rather than simply be discarded. As such, AD (anaerobic digestion), the co-digestion of food waste with sewage sludge, could become a strategic and cross-sectoral solution, if carefully applied, with the potential to convey beneficial synergies for the water and the waste industries. However, barriers to the development of such systems are diverse and often interlinked. Institutional frameworks, decision making constraints, and regulatory boundaries might still appear to require an answer for three different problems, but this can be overcome if presented as just three different parts of the same answer. Such synergies could deliver economic benefits from the additional renewable energy generated and its associated incentives, and savings on costs for the infrastructure required for the exclusive digestion of food waste.
基金Project supported by the Grant-in-Aid for Science Research of Japan Society for the Promotion of Science (JSPS), Japan.
文摘Two dry anaerobic digestions of organic solid wastes were conducted for 6 weeks in a lab-scale batch experiment for investigating the start-up performances under mesophilic and thermophilic conditions. The enzymatic activities, i.e., β-glucosidase, N-α-benzoyl-Largininamide (BAA)-hydrolysing protease, urease and phosphatase activities were analysed. The BAA-hydrolysing protease activity during the first 2-3 weeks was low with low pH, but was enhanced later with the pH increase. β-Glucosidase activity showed the lowest values in weeks 1-2, and recovered with the increase of BAA-hydrolysing protease activity. Acetic acid dominated most of the total VFAs in thermophilic digestion, while propionate and butyrate dominated in mesophilic digestion. Thermophilic digestion was confirmed more feasible for achieving better performance against misbalance, especially during the start-up period in a dry anaerobic digestion process.
基金supported by the National Natural Science Foundation of China (No. 20977066)the National Key Project for Water Pollution Control (No.2008ZX07316-002, 2008ZX07317-003)the Specialized Research Found for Doctoral Program of Higher Education of China (No. 200802470029)
文摘Effect of ultrasonic pretreatment on sludge dewaterability was determined and the fate of extracellular polymeric substances (EPS) matrix in mesophilic anaerobic digestion after ultrasonic pretreatment was studied. Characteristics of proteins (PN), polysaccharides (PS), excitation-emission matrix (EEM) fluorescence spectroscopy and molecular weight (MW) distribution of dissolved organic matters (DOM) in different EPS fractions were evaluated. The results showed that after ultrasonic pretreatment, the normalized capillary suction time (CST) decreased from 44.4 to 11.1 (sec·L)/g total suspended solids (TSS) during anaerobic digestion, indicating that sludge dewaterability was greatly improved. The normalized CST was significantly correlated with PN concentration (R2 = 0.92, p 〈 0.01) and the PN/PS ratio (R2 = 0.84, p 〈 0.01) in the loosely bound EPS (LB-EPS) fraction. Meanwhile, the average MW of DOM in the LB- EPS and tightly bound EPS (TB-EPS) fractions also had a good correlation with the normalized CST (R2 〉 0.66, p 〈 0.01). According to EEM fluorescence spectroscopy, tryptophan-like substances intensities in the slime, LB-EPS and TB-EPS fractions were correlated with the normalized CST. The organic matters in the EPS matrix played an important role in influencing sludge dewaterability.
文摘To evaluate the influence of lactic acid on the methanogenesis, anaerobic digestion of kitchen wastes was firstly conducted in a two-phase anaerobic digestion process, and performance of two digesters fed with lactic acid and glucose was subsequently compared. The results showed that the lactic acid was the main fermentation products of hydrolysis-acidification stage in the two-phase anaerobic digestion process for kitchen wastes. The lactic acid concentration constituted approximately 50% of the chemical oxygen demand (COD) concentration in the hydrolysis-acidification liquid. The maximum organic loading rate was lower in the digester fed with lactic acid than that fed with glucose. Volatile fatty acids (VFAs) and COD removal were deteriorated in the methanogenic reactor fed with lactic acid compared to that fed with glucose. The specific methanogenic activity (SMA) declined to 0.343 g COD/(gVSS-d) when the COD loading were designated as 18.8 g/(L-d) in the digester fed with lactic acid. The propionic acid accumulation occurred due to the high concentration of lactic acid fed. It could be concluded that avoiding the presence of the lactic acid is necessary in the hydrolysis-acidification process for the improvement of the two-phase anaerobic digestion process of kitchen wastes.
基金Project supported by the National Natural Science Foundation of China(No. 50278036)the Natural Science Foundation of Guangdong Province (No. 04105951)
文摘A new anaerobic reactor, Jet-loop anaerobic fluidized bed (JLAFB), was designed for treating high-sulfate wastewater. The treatment characteristics, including the effect of influent COD/SO42 ratio and alkalinity and sulfide inhibition in reactors, were discussed for a JLAFB and a general anaerobic fiuidized bed (AFB) reactor used as sulfate-reducing phase and methane-producing phase, respectively, in two-phase anaerobic digestion process. The formation of granules in the two reactors was also examined. The results indicated that COD and sulfate removal had different demand of influent COD/SO4^2- ratios. When total COD removal was up to 85%, the ratio was only required up to 1.2, whereas, total sulfate removal up to 95% required it exceeding 3.0. The alkalinity in the two reactors increased linearly with the growth of influent alkalinity. Moreover, the change of influent alkalinity had no significant effect on pH and volatile fatty acids (VFA) in the two reactors. Influent alkalinity kept at 400-500 mg/L could meet the requirement of the treating process. The JLAFB reactor had great advantage in avoiding sulfide and free-H2S accumulation and toxicity inhibition on microorganisms. When sulfate loading rate was up to 8. 1 kg/(m^3.d), the sulfide and free-H2S concentrations in JLAFB reactor were 58.6 and 49.7 mg/L, respectively. Furthermore, the granules, with offwhite color, ellipse shape and diameters of 1.0-3.0 mm, could be developed in JLAFB reactor. In granules, different groups of bacteria were distributed in different layers, and some inorganic metal compounds such as Fe, Ca, Mg etc. were found.
文摘The influence of temperature on the performance of anaerobic reactors for treating the organic fraction of municipal sohd waste (OFMSW) was studied. Batch digestion of OFMSW was carded out for 32 d at different temperature (25℃, 35℃, 45℃ and 55℃) conditions for total solid concentrations (TS) 17% with the ratio of total organic carbon to nitrogen (C/N) being, 25:1 respectively, while keeping other parameters constant such as inoculum, start-up pH, reactor volume (2 L) and so on. Temperature can influence the methanogenic bacteria activity, accordingly inhibiting the OFMSW biodegradation and stabilization efficiency. Anaerobic reactors excelled at TS reduction, total volatile solid reduction, chemical oxygen demand reduction, increasing cumulative biogas production, whose rate was at temperature (35℃ and 55℃) conditions. Methane concentration in the biogas was above 65% in four reactors. In addition, the fluctuation of temperatures resulted in the biogas production variation. The data obtained indicated that temperature had a significant influence on anaerobic process.
基金Supported by the Natural Science Foundation of Heilongjiang Province(QC2014C031)Returned Overseas Foundation of Heilongjiang Province(LC2013C07)+2 种基金Outstanding Academic Leaders Foundation of Harbin City(2013RFXYJ015)Young Reserve Talent Foundation of Harbin City(2014RFQYJ141)Outstanding Young Foundation of Heilongjiang Academy of Agricultural Sciences(2013JCQN003)
文摘Anaerobic co-digestion of food waste(FW) and rice straw(RS) in continuously stirred tank reactor(CSTR) at high organic loading rate(OLR) was investigated. Co-digestion studies of FW and RS with six different mixing ratios were conducted at an initial volatile solid(VS) concentration of more than 3 g VS · L-1. The biogas production, methane contents, degradation efficiency of VS, chemical oxygen demand(COD) and volatile fatty acids(VFAs) were determined to evaluate the stability and performance of the system. The results showed that the co-digestion process had higher system stability and higher volumetric biogas production than mono-digestions. Increase in FW content in the feedstock could increase the methane yield and shorten retention time. The efficiency of co-digestion systems mainly relied on the mixing ratios of FW and RS to some extent. The highest methane yield was 60.55 m L· g V· S-1 · d-1 at a mass ratio(FW/RS) of 3 : 1, which was 178% and 70% higher than that of mono-digestions of FW and RS, respectively. Consequently, the anaerobic co-digestion of FW and RS could have superior stability and better performance than monodigestions in higher organic loading system.
基金Supported by the Key Technologies R&D Program of China(2016YFD0501402)
文摘In order to enhance the biomethane production from corn stover, choosing effective pretreatment is one of the necessary steps before starting anaerobic digestion(AD).This study was aimed to analyze the effectiveness of freezing–thawing with ammonia pretreatment on substance degradation and AD performance of corn stover.Three ammonia concentrations(2%, 4%, and 6%) with two different moisture contents(50% and 70%) were used to pretreat the corn stover at two temperatures(-20 ℃ and 20 ℃).The result showed that an optimum pretreatment condition for corn stover was at the temperature of -20 ℃, moisture content of 70% and ammonia concentration of 2%.Under the optimum pretreatment condition, the maximum biomethane yield reached 261 ml·(g VS)^(-1), which was 41.08% higher than that of the untreated.Under different pretreatment conditions,the highest loss of lignin at -20 ℃ with 2% ammonia concentration was 63.36% compared with the untreated.The buffer capacity of AD system was also improved after the freezing–thawing with ammonia pretreatment.Therefore, the freezing–thawing with ammonia pretreatment can be used to improve AD performance for corn stover.This study provides further insight for exploring an efficient freezing–thawing with ammonia pretreatment strategy to enhance AD performance for the practical application.
基金supported by the Major Science and Technology Program for Water Pollution Control and Treatment,China (2012ZX07202-004-02)
文摘The effects of different concentrations of oxytetracycline (OTC) on the dynamics of bacterial and archaeal communities during the mesophilic anaerobic digestion (37°C) of cow manure were investigated. Before anaerobic digestion, OTC was added to digesters at concentrations of 20, 50, and 80 mg L-1, respectively. Compared with no-antibiotic control, all methane productions underwent different levels of inhibition at different concentrations of OTC. Changes in the bacterial and archaeal communities were discussed by using PCR-denaturing gradient gel electrophoresis (DGGE). Results showed that OTC affected the richness and diversity of bacterial and archaeal communities. The bacterial genus Flavobacterium and an uncultured bacterium (JN256083.1) were detected throughout the entire process of anaerobic digestion and seemed to be the functional bacteria. Methanobrevibacter boviskoreani and an uncultured archaeon (FJ230982.1) dominated the archaeal communities during anaerobic digestion. These microorganisms may have high resistance to OTC and may play vital roles in methane production.
基金the fund supports from the National Natural Science Foundation of China(21808010).
文摘This study investigated the effects of soluble chemical oxygen demand(s COD),volatile fatty acids(VFAs),and microbial community on biogas production in the process of rice straw(RS)anaerobic digestion(AD).The results showed that the s COD concentrations and VFA production appeared the same trend,which was inversely related with that of daily biogas production.The cumulative methane yield of RS was 194.9 ml·(g VS)^-1·^-1.The modified Gompertz model is the best fit for measured methane yields of RS in the three kinetic models of first-order kinetic,Cone and modified Gompertz.Firmicutes,Bacteroidetes,and Euryarchaeota were the dominant microbial phyla throughout AD process.At the genus level,the microorganisms mainly composed of Clostridium,Vadin,Terrisporobacter,Methanosaeta,Methanobacterium,and Methanosarcina.Proteiniphilum showed strong relationship with s COD and VFA production.Clostridium and Terrisporobacter displayed relationship with biogas production.Therefore,in order to improve the stability of the AD system,the parameter changes of VFAs,s COD,and biogas yield were monitored in the RS AD process.The study can provide theoretical basis for improving the efficiency of RS AD.
基金Supported by Specialized Research Fund for the Doctoral Program of Higer Education(20120010110004)the Natural Science Foundation of Beijing(8142030)
文摘Wheat straw biodegradability during anaerobic digestion was improved by treatment with potassium hydroxide (KOH) to decrease digestion time and enhance biomethane production and fertility value. KOH concentrations of 1% (KI), 3% ([(2), 6% (K3) and 9% (l(4) were tested for wheat straw pretreatment at ambient temperature with a C:N ratio of 25:1.86% of total solids (TS), 89% of volatile solids (VS) and 22% of lignocellulose, cellulose and hemi- cellulose (LCH) (22%) were decomposed effectively with the wheat straw pretreated by 6% KOH. Enhanced bio- gas production and cumulative biomethane yield of 258 ml. (g VS)-1 were obtained increased by 45% and 41% respectively, compared with untreated wheat straw. Pretreated wheat straw digestion also yielded a digestate with higher fertilizer values potassium (l 38%), calcium (22%) and magnesium (16%). These results show that TS, VS and LCH can be effectively removed from wheat straw pretreated with KOH, improving biodegradability biomethane production and fertilizer value.
基金Sponsored by the National Natural Science Foundation for Youth of China(Grant No.51308149)Major Science and Technology Program for Water Pollution Control Treatment(Grant No.2014ZX07201-012+1 种基金2013ZX07201007-001)State Key Laboratory of Urban Water Resource and Environment(Harbin Institute of Technology)(Grant No.2014TS08)
文摘Anaerobic digestion is widely used in the treatment of industrial wastewater,excess activated sludge,municipal waste,crop straw and livestock manure,with the functions of environmental protection and energy recovery. This review summarizes and evaluates the present knowledge of effects of different states of Fe( ZVI,Fe( II),Fe( III)) on hydrogen and methane production in anaerobic digestion process. The potential promotion effects of iron oxides nanoparticles( IONPs),especially magnetite nanoparticles on anaerobic digestion are also mentioned. Fe plays important role in transporting electron,stimulating bacterial growth and increasing hydrogen and methane production rate by promoting enzyme activity. Adding Fe with different morphologies and valence states in anaerobic digestion to increase biogas( hydrogen and methane) production and enhance organic matter degradation simultaneously,which has attracted many scientists' attention in recent years. Rapid progress in this area has been made over the last few years,since Fe is essential to the fermentative hydrogen and methane production,while few is known about how Fe affects the fermentative biogas production. This review is significant to maintain the stable operation of the biogas project.
基金Supported by National Key Technology R&D Program(2015BAD-21B04)
文摘The possibility of anaerobic digestion of high oil waste at high temperatures was explored,and the effects of fat concentration on biogas production via anaerobic digestion were analyzed by batch and continuous experiments successively. Besides,the response and recovery of the digestion system to the shock of high concentrations of oil were studied. The results showed that the anaerobic digestion of high oil waste could be carried out,and fat concentration had a significant effect on the anaerobic digestion. In the batch experiments,the process of anaerobic digestion could carry out only when fat concentration was 0-1. 68%,and the average methane content was 46. 42%; with the increase of fat concentration,both methane content and production rate decreased significantly,and the digestion period was extended obviously. When fat concentration exceeded 2. 52%,the anaerobic digestion failed to start,and methane could not be detected in the produced biogas. In the continuous experiments,the system could withstand a certain concentration of fat( 6 g/L),and anaerobic digestion process would be inhibited when it experienced the impact of a high oil load( 26. 7 g/L). Nevertheless,this process could recover quickly after the removal of the impact,and the system could withstand a higher fat concentration( 13 g/L) than before. Furthermore,the volume production rate of biogas was approximately 1 L/( L·d),and methane content was about 55%.
文摘The search for alternative energy and fuels has motivated researchers to focus on renewable and sustainable means of getting them instead of relying on the conventional way of energy and fuel production. Anaerobic digestion is a biochemical process during which complex organic matter is decomposed in absence of oxygen, by various types of anaerobic microorganisms. The process of Anaerobic digestion is appropriate for all waste water treatment systems given that the solid can be introduced to the system at an acceptable concentration. Biogas, the product of anaerobic digestion process is a clean and renewable form of energy which can be a substitute for conventional sources of energy which are causing ecological-environmental problems and at the same time depleting at a faster rate. This paper reviews the anaerobic digestion process and its complexities;it covers different stages involved in the process, the substrate used in the process, the relationship between the substrate and microorganisms and important operating parameters such as pH, temperature and loading rate.