In order to evaluate the influence of microbial community structure of seed sludge on the properties of aerobic nitrifying granules, these granules were cultivated with different seed sludge, and the variation of micr...In order to evaluate the influence of microbial community structure of seed sludge on the properties of aerobic nitrifying granules, these granules were cultivated with different seed sludge, and the variation of microbial community and dominant bacterial groups that impact the nitrogen removal efficiency of the aerobic nitrifying granules were analyzed and identified using 16 s rDNA sequence and denaturing gradient gel electrophoresis(DGGE) profiles. The results presented here demonstrated that the influence of the community structure of seed sludge on the properties of aerobic nitrifying granules was remarkable, and the granules cultivated by activated sludge from a beer wastewater treatment plant showed better performance, with a stable sludge volume index(SVI) value of 20 m L/g, high extracellular polymeric substance(EPS) content of 183.3 mg/L, high NH4+-N removal rate of 89.42% and abundant microbial population with 10 dominant bacterial groups. This indicated that activated sludge with abundant communities is suitable for use as seed sludge in culturing aerobic nitrifying granules.展开更多
Aerobic sludge granulation was rapidly obtained in the erlenmeyer bottle and sequencing batch reactor(SBR) using piggery wastewater.Aerobic granulation occurred on day 3 and granules with mean diameter of 0.2 mm and...Aerobic sludge granulation was rapidly obtained in the erlenmeyer bottle and sequencing batch reactor(SBR) using piggery wastewater.Aerobic granulation occurred on day 3 and granules with mean diameter of 0.2 mm and SVI_(30) of 20.3 mL/g formed in SBR on day 18.High concentrations of Ca and Fe in the raw piggery wastewater and operating mode accelerated aerobic granulation,even though the seed sludge was from a municipal wastewater treatment plant(WWTP).Alpha diversity analysis revealed Operational Taxonomic Units,Shannon,ACE and Chao 1 indexes in aerobic granules were 2013,5.51,4665.5 and 3734.5,which were obviously lower compared to seed sludge.The percentages of major microbial communities,such as Protect)acteria,Bacteroidetes and Firmicutes were obviously higher in aerobic granules than seed sludge.Chlorqflexi,Planctomycetes,Actinobactena,TM7 and Aridobacteria showed much higher abundances in the inoculum.The main reasons might be the characteristics of raw piggery wastewater and granule structure.展开更多
As a special biofilm structure,microbial attachment is believed to play an important role in the granulation of aerobic granular activated sludge(AGAS).This experiment was to investigate the biological effect of Ca^...As a special biofilm structure,microbial attachment is believed to play an important role in the granulation of aerobic granular activated sludge(AGAS).This experiment was to investigate the biological effect of Ca^2+,Mg^2+,Cu^2+,Fe^2+,Zn^2+,and K+which are the most common ions present in biological wastewater treatment systems,on the microbial attachment of AGAS and flocculent activated sludge(FAS),from which AGAS is always derived,in order to provide a new strategy for the rapid cultivation and stability control of AGAS.The result showed that attachment biomass of AGAS was about 300%higher than that of FAS without the addition of metal ions.Different metal ions had different effects on the process of microbial attachment.FAS and AGAS reacted differently to the metal ions as well,and in fact,AGAS was more sensitive to the metal ions.Specifically,Ca^2+,Mg^2+,and K+could increase the microbial attachment ability of both AGAS and FAS under appropriate concentrations,Cu^2+,Fe^2+,and Zn^2+were also beneficial to the microbial attachment of FAS at low concentrations,but Cu^2+,Fe^2+,and Zn^2+greatly inhibited the attachment process of AGAS even at extremely low concentrations.In addition,the acylated homoserine lactone(AHL)-based quorum sensing system,the content of extracellular polymeric substances and the relative hydrophobicity of the sludges were greatly influenced by metal ions.As all these parameters had close relationships with the microbial attachment process,the microbial attachment may be affected by changes of these parameters.展开更多
Marine microbes are major drivers of marine biogeochemical cycles and play critical roles in the ecosystems. Aerobic anoxygenic phototrophic bacteria(AAPB) are an important bacterial functional group with capability o...Marine microbes are major drivers of marine biogeochemical cycles and play critical roles in the ecosystems. Aerobic anoxygenic phototrophic bacteria(AAPB) are an important bacterial functional group with capability of harvesting light energy and wide distribution, and appear to have a particular role in the ocean's carbon cycling. Yet the global pattern of AAPB distribution was controversial at the beginning of the 21 st century due to the defects of the AAPB enumeration methods. An advanced time-series observation-based infrared epifluorescence microscopy(TIREM) approach was established to amend the existing AAPB quantitative deviation and led to the accurate enumeration of AAPB in marine environments. The abundance of AAPB and AAPB% were higher in coastal and continental shelf waters than in oceanic waters, which does not support the idea that AAPB are specifically adapted to oligotrophic conditions due to photosynthesis in AAPB acting a supplement to their organic carbon respiration. Further investigation revealed that dependence of AAPB on dissolved organic carbon produced by phytoplankton(PDOC) may limit their competition and control AAPB distribution. So, the selection of carbon sources by AAPB indicated that they can effectively fractionate the carbon flow in the sea. Enlightened by these findings, the following studies on the interactions between marine microbes and DOC led to the discovery of a new mechanism of marine carbon sequestration—the Microbial Carbon Pump(MCP). The conceptual framework of MCP addresses the sources and mechanism of the vast DOC reservoir in the ocean and represents a breakthrough in the theory of ocean carbon sequestration.展开更多
基金supported by the Natural Science Foundation of Heilongjiang Province (No. E201461)the National Natural Science Foundation of China (No. 51408200)
文摘In order to evaluate the influence of microbial community structure of seed sludge on the properties of aerobic nitrifying granules, these granules were cultivated with different seed sludge, and the variation of microbial community and dominant bacterial groups that impact the nitrogen removal efficiency of the aerobic nitrifying granules were analyzed and identified using 16 s rDNA sequence and denaturing gradient gel electrophoresis(DGGE) profiles. The results presented here demonstrated that the influence of the community structure of seed sludge on the properties of aerobic nitrifying granules was remarkable, and the granules cultivated by activated sludge from a beer wastewater treatment plant showed better performance, with a stable sludge volume index(SVI) value of 20 m L/g, high extracellular polymeric substance(EPS) content of 183.3 mg/L, high NH4+-N removal rate of 89.42% and abundant microbial population with 10 dominant bacterial groups. This indicated that activated sludge with abundant communities is suitable for use as seed sludge in culturing aerobic nitrifying granules.
基金supported by the National Nature Science Foundation of China(No.51478433)
文摘Aerobic sludge granulation was rapidly obtained in the erlenmeyer bottle and sequencing batch reactor(SBR) using piggery wastewater.Aerobic granulation occurred on day 3 and granules with mean diameter of 0.2 mm and SVI_(30) of 20.3 mL/g formed in SBR on day 18.High concentrations of Ca and Fe in the raw piggery wastewater and operating mode accelerated aerobic granulation,even though the seed sludge was from a municipal wastewater treatment plant(WWTP).Alpha diversity analysis revealed Operational Taxonomic Units,Shannon,ACE and Chao 1 indexes in aerobic granules were 2013,5.51,4665.5 and 3734.5,which were obviously lower compared to seed sludge.The percentages of major microbial communities,such as Protect)acteria,Bacteroidetes and Firmicutes were obviously higher in aerobic granules than seed sludge.Chlorqflexi,Planctomycetes,Actinobactena,TM7 and Aridobacteria showed much higher abundances in the inoculum.The main reasons might be the characteristics of raw piggery wastewater and granule structure.
基金supported by the National Natural Science Foundation of China (No. 51578069)
文摘As a special biofilm structure,microbial attachment is believed to play an important role in the granulation of aerobic granular activated sludge(AGAS).This experiment was to investigate the biological effect of Ca^2+,Mg^2+,Cu^2+,Fe^2+,Zn^2+,and K+which are the most common ions present in biological wastewater treatment systems,on the microbial attachment of AGAS and flocculent activated sludge(FAS),from which AGAS is always derived,in order to provide a new strategy for the rapid cultivation and stability control of AGAS.The result showed that attachment biomass of AGAS was about 300%higher than that of FAS without the addition of metal ions.Different metal ions had different effects on the process of microbial attachment.FAS and AGAS reacted differently to the metal ions as well,and in fact,AGAS was more sensitive to the metal ions.Specifically,Ca^2+,Mg^2+,and K+could increase the microbial attachment ability of both AGAS and FAS under appropriate concentrations,Cu^2+,Fe^2+,and Zn^2+were also beneficial to the microbial attachment of FAS at low concentrations,but Cu^2+,Fe^2+,and Zn^2+greatly inhibited the attachment process of AGAS even at extremely low concentrations.In addition,the acylated homoserine lactone(AHL)-based quorum sensing system,the content of extracellular polymeric substances and the relative hydrophobicity of the sludges were greatly influenced by metal ions.As all these parameters had close relationships with the microbial attachment process,the microbial attachment may be affected by changes of these parameters.
基金Ministry of Science and Technology of the People’s Republic of China Project (Grant No. 2011IM010700)the National Natural Science Foundation of China (Grant Nos. 91428308, 41422603 and 41176095)the State Oceanic Administration of China Project (Grant No. GASI-03-01-02-03)
文摘Marine microbes are major drivers of marine biogeochemical cycles and play critical roles in the ecosystems. Aerobic anoxygenic phototrophic bacteria(AAPB) are an important bacterial functional group with capability of harvesting light energy and wide distribution, and appear to have a particular role in the ocean's carbon cycling. Yet the global pattern of AAPB distribution was controversial at the beginning of the 21 st century due to the defects of the AAPB enumeration methods. An advanced time-series observation-based infrared epifluorescence microscopy(TIREM) approach was established to amend the existing AAPB quantitative deviation and led to the accurate enumeration of AAPB in marine environments. The abundance of AAPB and AAPB% were higher in coastal and continental shelf waters than in oceanic waters, which does not support the idea that AAPB are specifically adapted to oligotrophic conditions due to photosynthesis in AAPB acting a supplement to their organic carbon respiration. Further investigation revealed that dependence of AAPB on dissolved organic carbon produced by phytoplankton(PDOC) may limit their competition and control AAPB distribution. So, the selection of carbon sources by AAPB indicated that they can effectively fractionate the carbon flow in the sea. Enlightened by these findings, the following studies on the interactions between marine microbes and DOC led to the discovery of a new mechanism of marine carbon sequestration—the Microbial Carbon Pump(MCP). The conceptual framework of MCP addresses the sources and mechanism of the vast DOC reservoir in the ocean and represents a breakthrough in the theory of ocean carbon sequestration.