期刊文献+
共找到728篇文章
< 1 2 37 >
每页显示 20 50 100
Numerical Study on Reduction in Aerodynamic Drag and Noise of High-Speed Pantograph
1
作者 Deng Qin Xing Du +1 位作者 Tian Li Jiye Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期2155-2173,共19页
Reducing the aerodynamic drag and noise levels of high-speed pantographs is important for promoting environmentally friendly,energy efficient and rapid advances in train technology.Using computational fluid dynamics t... Reducing the aerodynamic drag and noise levels of high-speed pantographs is important for promoting environmentally friendly,energy efficient and rapid advances in train technology.Using computational fluid dynamics theory and the K-FWH acoustic equation,a numerical simulation is conducted to investigate the aerodynamic characteristics of high-speed pantographs.A component optimization method is proposed as a possible solution to the problemof aerodynamic drag and noise in high-speed pantographs.The results of the study indicate that the panhead,base and insulator are the main contributors to aerodynamic drag and noise in high-speed pantographs.Therefore,a gradual optimization process is implemented to improve the most significant components that cause aerodynamic drag and noise.By optimizing the cross-sectional shape of the strips and insulators,the drag and noise caused by airflow separation and vortex shedding can be reduced.The aerodynamic drag of insulator with circular cross section and strips with rectangular cross section is the largest.Ellipsifying insulators and optimizing the chamfer angle and height of the windward surface of the strips can improve the aerodynamic performance of the pantograph.In addition,the streamlined fairing attached to the base can eliminate the complex flow and shield the radiated noise.In contrast to the original pantograph design,the improved pantograph shows a 21.1%reduction in aerodynamic drag and a 1.65 dBA reduction in aerodynamic noise. 展开更多
关键词 High-speed pantograph aerodynamic drag aerodynamic noise REDUCTION optimizing
下载PDF
Research on the Generation Mechanism and Suppression Method of Aerodynamic Noise in Expansion Cavity Based on Hybrid Method
2
作者 Haitao Liu Jiaming Wang +2 位作者 Xiuliang Zhang Yanji Jiang Qian Xiao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第6期2747-2772,共26页
The expansion chamber serves as the primary silencing structure within the exhaust pipeline.However,it can also act as a sound-emitting structure when subjected to airflow.This article presents a hybrid method for num... The expansion chamber serves as the primary silencing structure within the exhaust pipeline.However,it can also act as a sound-emitting structure when subjected to airflow.This article presents a hybrid method for numerically simulating and analyzing the unsteady flow and aerodynamic noise in an expansion chamber under the influence of airflow.A fluid simulation model is established,utilizing the Large Eddy Simulation(LES)method to calculate the unsteady flow within the expansion chamber.The simulation results effectively capture the development and changes of the unsteady flow and vorticity inside the cavity,exhibiting a high level of consistency with experimental observations.To calculate the aerodynamic noise sources within the cavity,the flow field results are integrated using the method of integral interpolation and inserted into the acoustic grid.The acoustic analogy method is then employed to determine the aerodynamic noise sources.An acoustic simulation model is established,and the flow noise source is imported into the sound field grid to calculate the sound pressure at the far-field response point.The calculated sound pressure levels and resonance frequencies show good agreement with the experimental results.To address the issue of airflow regeneration noise within the cavity,perforated tubes are selected as a means of noise suppression.An experimental platformfor airflow regeneration noise is constructed,and experimental samples are processed to analyze and verify the noise suppression effect of perforated tube expansion cavities under different airflow velocities.The research findings indicate that the perforated tube expansion cavity can effectively suppress low-frequency aerodynamic noise within the cavity by impeding the formation of strong shear layers.Moreover,the semi-perforated tube expansion cavity demonstrates the most effective suppression of aerodynamic noise. 展开更多
关键词 Expansion cavity aerodynamic noise numerical simulation hybrid method perforated tube
下载PDF
Influence of Anteroposterior Symmetrical Aero-Wings on the Aerodynamic Performance of High-Speed Train
3
作者 Peiheng He Jiye Zhang +2 位作者 Lan Zhang Jiaqi Wang Yuzhe Ma 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期937-953,共17页
The running stability of high-speed train is largely constrained by the wheel-rail coupling relationship,and the continuous wear between the wheel and rail surfaces will profoundly affect the dynamic performance of th... The running stability of high-speed train is largely constrained by the wheel-rail coupling relationship,and the continuous wear between the wheel and rail surfaces will profoundly affect the dynamic performance of the train.In recent years,under the background of increasing train speed,some scientific researchers have proposed a new idea of using the lift force generated by the aerodynamic wings(aero-wing)installed on the roof to reduce the sprung load of the carriage in order to alleviate the wear and tear of the wheel and rail.Based on the bidirectional running characteristics of high-speed train,this paper proposes a scheme to apply aero-wings with anteroposterior symmetrical cross-sections on the roof of the train.After the verification of the wind tunnel experimental data,the relatively better airfoil section and extension formof anteroposterior symmetrical aero-wing is selected respectively in this paper,and the aero-wings are fixedly connected to the roof of the train through the mounting column to conduct aerodynamic simulation analysis.The research shows that:compared with the circular-arc and oval crosssections,this paper believes that the crescent cross-section can form greater aerodynamic lift force in a limited space.Considering factors such as aerodynamic parameters,ground effect,and manufacturing process,this paper proposes to adopt aero-wings with arc type extension form and connect them to the roof of the train through mounting columns with shuttle cross-section.When the roof of the train is covered with aero-wings and runs at high speed,the sprung load of the carriages can be effectively reduced.However,there are certain hidden dangers in the tail carriage due to the large amount of lift force,so,the intervention of the aero-wing lifting mechanism is required.At the same time,it is necessary to optimize the overall aerodynamic drag force reduction in the followup work. 展开更多
关键词 Anteroposterior symmetrical aero-wing wheel-rail wear aerodynamic lift force ground effect numerical simulation
下载PDF
Aerodynamic/stealth design of S-duct inlet based on discrete adjoint method
4
作者 Jun DENG Ke ZHAO +4 位作者 Lin ZHOU Wei ZHANG Bowen SHU Jiangtao HUANG Zhenghong GAO 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第4期725-746,共22页
It is a major challenge for the airframe-inlet design of modern combat aircrafts,as the flow and electromagnetic wave propagation in the inlet of stealth aircraft are very complex.In this study,an aerodynamic/stealth ... It is a major challenge for the airframe-inlet design of modern combat aircrafts,as the flow and electromagnetic wave propagation in the inlet of stealth aircraft are very complex.In this study,an aerodynamic/stealth optimization design method for an S-duct inlet is proposed.The upwind scheme is introduced to the aerodynamic adjoint equation to resolve the shock wave and flow separation.The multilevel fast multipole algorithm(MLFMA)is utilized for the stealth adjoint equation.A dorsal S-duct inlet of flying wing layout is optimized to improve the aerodynamic and stealth characteristics.Both the aerodynamic and stealth characteristics of the inlet are effectively improved.Finally,the optimization results are analyzed,and it shows that the main contradiction between aerodynamic characteristics and stealth characteristics is the centerline and crosssectional area.The S-duct is smoothed,and the cross-sectional area is increased to improve the aerodynamic characteristics,while it is completely opposite for the stealth design.The radar cross section(RCS)is reduced by phase cancelation for low frequency conditions.The method is suitable for the aerodynamic/stealth design of the aircraft airframe-inlet system. 展开更多
关键词 S-duct inlet aerodynamic/stealth optimization design discrete adjoint upwind scheme multilevel fast multipole algorithm(MLFMA)
下载PDF
Influence of Flap Parameters on the Aerodynamic Performance of a Wind-Turbine Airfoil
5
作者 Yuanjun Dai Jingan Cui +2 位作者 Baohua Li Cong Wang Kunju Shi 《Fluid Dynamics & Materials Processing》 EI 2024年第4期771-786,共16页
A numerical method has been used to analyze the flow field related to a NACA 0015 airfoil with and without a flap and assess the influence of the flap height and angle on the surface pressure coefficient,lift coeffici... A numerical method has been used to analyze the flow field related to a NACA 0015 airfoil with and without a flap and assess the influence of the flap height and angle on the surface pressure coefficient,lift coefficient,and drag coefficient.The numerical results demonstrate that the flap can effectively improve the lift coefficient of the airfoil;however,at small attack angles,its influence is significantly reduced.When the angle of attack exceeds the critical stall angle and the flap height is 1.5%of the chord length,the influence of the flap becomes very evident.As the flap height increases,the starting point of the separation vortex gradually moves forward and generates a larger wake vortex.Optimal aerodynamic characteristics are obtained for 1.5%(of the chord length)flap height and a 45°flap angle;in this case,the separation vortex is effectively reduced. 展开更多
关键词 AIRFOIL flap height flap angle lift-drag ratio aerodynamic characteristics
下载PDF
Aerodynamic Features of High-Speed Maglev Trains with Different Marshaling Lengths Running on a Viaduct under Crosswinds
6
作者 Zun-Di Huang Zhen-Bin Zhou +2 位作者 Ning Chang Zheng-Wei Chen Su-Mei Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期975-996,共22页
The safety and stability of high-speed maglev trains traveling on viaducts in crosswinds critically depend on their aerodynamic characteristics.Therefore,this paper uses an improved delayed detached eddy simulation(ID... The safety and stability of high-speed maglev trains traveling on viaducts in crosswinds critically depend on their aerodynamic characteristics.Therefore,this paper uses an improved delayed detached eddy simulation(IDDES)method to investigate the aerodynamic features of high-speed maglev trains with different marshaling lengths under crosswinds.The effects of marshaling lengths(varying from 3-car to 8-car groups)on the train’s aerodynamic performance,surface pressure,and the flow field surrounding the train were investigated using the three-dimensional unsteady compressible Navier-Stokes(N-S)equations.The results showed that the marshaling lengths had minimal influence on the aerodynamic performance of the head and middle cars.Conversely,the marshaling lengths are negatively correlated with the time-average side force coefficient(CS)and time-average lift force coefficient(Cl)of the tail car.Compared to the tail car of the 3-car groups,the CS and Cl fell by 27.77%and 18.29%,respectively,for the tail car of the 8-car groups.It is essential to pay more attention to the operational safety of the head car,as it exhibits the highest time average CS.Additionally,the mean pressure difference between the two sides of the tail car body increased with the marshaling lengths,and the side force direction on the tail car was opposite to that of the head and middle cars.Furthermore,the turbulent kinetic energy of the wake structure on the windward side quickly decreased as marshaling lengths increased. 展开更多
关键词 High-speed maglev train marshaling lengths crosswinds aerodynamic features
下载PDF
Effect of Bogie Cavity End Wall Inclination on Flow Field and Aerodynamic Noise in the Bogie Region of High-Speed Trains
7
作者 Jiawei Shi Jiye Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期2175-2195,共21页
Combining the detached eddy simulation(DES)method and Ffowcs Williams-Hawkings(FW-H)equation,the effect of bogie cavity end wall inclination on the flow field and aerodynamic noise in the bogie region is numerically s... Combining the detached eddy simulation(DES)method and Ffowcs Williams-Hawkings(FW-H)equation,the effect of bogie cavity end wall inclination on the flow field and aerodynamic noise in the bogie region is numerically studied.First,the simulation is conducted based on a simplified cavity-bogie model,including five cases with different inclination angles of the front and rear walls of the cavity.By comparing and analyzing the flow field and acoustic results of the five cases,the influence of the regularity and mechanism of the bogie cavity end wall inclination on the flow field and the aerodynamic noise of the bogie region are revealed.Then,the noise reduction strategy determined by the results of the simplified cavity-bogie model is applied to a three-car marshaling train model to verify its effectiveness when applied to the real train.The results reveal that the forward inclination of the cavity front wall enlarges the influence area of shear vortex structures formed at the leading edge of the cavity and intensifies the interaction between the vortex structures and the front wheelset,frontmotor,and front gearbox,resulting in the increase of the aerodynamic noise generated by the bogie itself.The backward inclination of the cavity rear wall is conducive to guiding the vortex structures flow out of the cavity and weakening the interaction between the shear vortex structures and the cavity rear wall,leading to the reduction of the aerodynamic noise generated by the bogie cavity.Inclining the rear end wall of the foremost bogie cavity of the head car is a feasible aerodynamic noise reduction measure for high-speed trains. 展开更多
关键词 BOGIE cavity flow aerodynamic noise end wall inclination
下载PDF
Train-induced aerodynamic characteristics of vertical sound barriers influenced by several factors
8
作者 Xiaowei Qiu Xiaozhen Li +1 位作者 Jing Zheng Ming Wang 《Railway Engineering Science》 EI 2024年第2期177-193,共17页
Investigations into the aerodynamic properties of vertical sound barriers exposed to high-speed operations employ computational fluid dynamics.The primary focus of this research is to evaluate the influence of train s... Investigations into the aerodynamic properties of vertical sound barriers exposed to high-speed operations employ computational fluid dynamics.The primary focus of this research is to evaluate the influence of train speed and the distance(D)from the track centerline under various operating conditions.The findings elucidate a marked elevation in the aerodynamic effect amplitude on sound barriers as train speeds increase.In single-train passages,the aerodynamic effect amplitude manifests a direct relationship with the square of the train speed.When two trains pass each other,the aerodynamic amplitude intensifies due to an additional aerodynamic increment on the sound barrier.This increment exhibits an approximate quadratic correlation with the retrograde train speed.Notably,the impact of high-speed trains on sound barrier aerodynamics surpasses that of low-speed trains,and this discrepancy amplifies with larger speed differentials between trains.Moreover,the train-induced aerodynamic effect diminishes significantly with greater distance(D),with occurrences of pressure coefficient(CP)exceeding the standard thresholds during dual-train passages.This study culminates in the formulation of universal equations for quantifying the influence of train speed and distance(D)on sound barrier aerodynamic characteristics across various operational scenarios. 展开更多
关键词 aerodynamic characteristic Sound barrier Two trains passing each other Distance from track centerline CFD simulation
下载PDF
Numerical Study on the Effect of Vortex Generators on the Aerodynamic Drag of a High-Speed Train
9
作者 Tian Li Hao Liang +1 位作者 Zerui Xiang Jiye Zhang 《Fluid Dynamics & Materials Processing》 EI 2024年第2期463-473,共11页
A relatively high aerodynamic drag is an important factor that hinders the further acceleration of high-speed trains.Using the shear stress transport(SST)k-ωturbulence model,the effect of various vortex generator typ... A relatively high aerodynamic drag is an important factor that hinders the further acceleration of high-speed trains.Using the shear stress transport(SST)k-ωturbulence model,the effect of various vortex generator types on the aerodynamic characteristics of an ICE2(Inter-city Electricity)train has been investigated.The results indi-cate that the vortex generators with wider triangle,trapezoid,and micro-ramp arranged on the surface of the tail car can significantly change the distribution of surface pressure and affect the vorticity intensity in the wake.This alteration effectively reduces the resistance of the tail car.Meanwhile,the micro-ramp vortex generator with its convergent structure at the rear exhibits enhancedflow-guiding capabilities,resulting in a 15.4%reduction in the drag of the tail car. 展开更多
关键词 Vortex generator aerodynamic drag REDUCTION numerical simulation
下载PDF
Experimental and Numerical Investigation on the Aerodynamic Characteristics of High-Speed Pantographs with Supporting Beam Wind Deflectors
10
作者 Shiyang Song Tongxin Han 《Fluid Dynamics & Materials Processing》 EI 2024年第1期127-145,共19页
Aiming to mitigate the aerodynamic lift force imbalance between pantograph strips,which exacerbates wear and affects the current collection performance of the pantograph-catenary system,a study has been conducted to s... Aiming to mitigate the aerodynamic lift force imbalance between pantograph strips,which exacerbates wear and affects the current collection performance of the pantograph-catenary system,a study has been conducted to support the beam deflector optimization using a combination of experimental measurements and computational fluid dynamics(CFD)simulations.The results demonstrate that the size,position,and installation orientation of the wind deflectors significantly influence the amount of force compensation.They also indicate that the front strip deflectors should be installed downwards and the rear strip deflectors upwards,thereby forming a“π”shape.Moreover,the lift force compensation provided by the wind deflectors increases with the size of the deflector.Alternative wind compensation strategies,such as control circuits,are also discussed,putting emphasis on the pros and cons of various pantograph types and wind compensation approaches. 展开更多
关键词 High-speed pantograph aerodynamic lift force supporting beam wind deflectors computational fluid dynamics(CFD)
下载PDF
Optimum Profiles of Endwall Contouring for Enhanced Net Heat Flux Reduction and Aerodynamic Performance
11
作者 Arjun K S Tide P S Biju N 《Journal of Harbin Institute of Technology(New Series)》 CAS 2024年第2期80-92,共13页
Successfully utilized non-axisymmetric endwalls to enhance turbine efficiencies(aerodynamic and turbine inlet temperatures)by controlling the characteristics of the secondary flow in a blade passage.This is accomplish... Successfully utilized non-axisymmetric endwalls to enhance turbine efficiencies(aerodynamic and turbine inlet temperatures)by controlling the characteristics of the secondary flow in a blade passage.This is accomplished by steady-state numerical hydrodynamics and deep knowledge of the field of flow.Because of the interaction between mainstream and purge flow contributing supplementary losses in the stage,non-axisymmetric endwalls are highly susceptible to the inception of purge flow exit compared to the flat and any advantage rapidly vanishes.The conclusions reveal that the supreme endwall pattern could yield a lowering of the gross pressure loss at the design stage and is related to the size of the top-loss location being productively lowered.This has led to diminished global thermal exchange lowered in the passage of the vane alone.The reverse flow adjacent to the suction side corner of the endwall is migrated farther from the vane surface,as the deviated pressure spread on the endwall accelerates the flow and progresses the reverse flow core still downstream.The depleted association between the tornado-like vortex and the corner vortex adjacent to the suction side corner of the endwall is the dominant mechanism of control in the contoured end wall.In this publication,we show that the non-axisymmetric endwall contouring by selective numerical shape change method at most prominent locations is advantageous in lowering the thermal load in turbines to augment the net heat flux reduction as well as the aerodynamic performance using multi-objective optimization. 展开更多
关键词 endwall contouring turbine VANE heat transfer phantom cooling coolant injection net heat flux reduction aerodynamic performance
下载PDF
The Effect of Lateral Offset Distance on the Aerodynamics and Fuel Economy of Vehicle Queues
12
作者 Lili Lei Ze Li +2 位作者 Haichao Zhou Jing Wang Wei Lin 《Fluid Dynamics & Materials Processing》 EI 2024年第1期147-163,共17页
The vehicle industry is always in search of breakthrough energy-saving and emission-reduction technologies.In recent years,vehicle intelligence has progressed considerably,and researchers are currently trying to take ... The vehicle industry is always in search of breakthrough energy-saving and emission-reduction technologies.In recent years,vehicle intelligence has progressed considerably,and researchers are currently trying to take advantage of these developments.Here we consider the case of many vehicles forming a queue,i.e.,vehicles traveling at a predetermined speed and distance apart.While the majority of existing studies on this subject have focused on the influence of the longitudinal vehicle spacing,vehicle speed,and the number of vehicles on aerodynamic drag and fuel economy,this study considers the lateral offset distance of the vehicle queue.The group fuel consumption savings rate is calculated and analyzed.As also demonstrated by experimental results,some aerodynamic benefits exist.Moreover,the fuel consumption saving rate of the vehicle queue decreases as the lateral offset distance increases. 展开更多
关键词 Vehicle platoon automotive aerodynamics horizontal offset distance fuel consumption savings rate computational fluid dynamics
下载PDF
Analysis of Influence on Aerodynamic Noise of Wind Turbine Blades under Different Pitch Angles
13
作者 Ruirong He Houcai Liu +1 位作者 Huimin Kang Jiale Xi 《Open Journal of Applied Sciences》 2024年第5期1237-1250,共14页
Aiming at the influence of blade pitch Angle on aerodynamic noise of wind turbines, the sound field and flow field distribution at 0˚, 5˚, 10˚ and 15˚ are calculated by numerical simulation. Then, through the distribu... Aiming at the influence of blade pitch Angle on aerodynamic noise of wind turbines, the sound field and flow field distribution at 0˚, 5˚, 10˚ and 15˚ are calculated by numerical simulation. Then, through the distribution of pressure field and velocity field calculated by flow field, the influence of different pitch angles on wind turbine blade aerodynamic noise and the reasons for its influence are analyzed. The results show that when the pitch Angle increases within 0˚ - 10˚, the aerodynamic noise pressure level of the blade decreases. However, the sound pressure level of aerodynamic noise increases in the range of 10˚ - 15˚. The changes of static pressure gradient and pressure pulsation on the blade surface make the aerodynamic noise change, and the changes of the two are positively correlated. At the same time, the fluid velocity and fluid motion state on the blade surface are closely related to the aerodynamic noise of the blade. The greater the fluid velocity, the more complex the fluid motion state and the greater the turbulent kinetic energy of the wind turbine blade, and the aerodynamic noise of the wind turbine blade will also increase. 展开更多
关键词 Pitch Angle aerodynamic Noise Static Pressure Gradient Fluid Motion Numerical Simulation
下载PDF
Analysis and Research on Aerodynamic Characteristics of Quad Tilt Rotor Aircraft
14
作者 Jike Jia Xiaomei Ye +2 位作者 Guoyi He Qingjin Huang Zhile Hong 《Advances in Aerospace Science and Technology》 2024年第1期28-39,共12页
For the quad tilt rotor aircraft, a computational fluid dynamics method based on multiple reference frames (MRF) was used to analyze the influence of aerodynamic layout parameters on the aerodynamic characteristics of... For the quad tilt rotor aircraft, a computational fluid dynamics method based on multiple reference frames (MRF) was used to analyze the influence of aerodynamic layout parameters on the aerodynamic characteristics of the quad tilt rotor aircraft. Firstly, a numerical simulation method for the interference flow field of the quad tilt rotor aircraft is established. Based on this method, the aerodynamic characteristics of isolated rotors, rotor combinations at different lateral positions on the wing, and rotor rotation directions under different inflow velocities were calculated and analyzed, in order to grasp their aerodynamic interference laws and provide reference for the design and control theory research of such aircraft. 展开更多
关键词 Quad Tilt Rotor Aircraft Analysis of aerodynamic Characteristics CFD Method
下载PDF
Refined Aerodynamic Test of Wide-Bodied Aircraft and Its Application 被引量:1
15
作者 Dawei Liu Zhiwei Jin +2 位作者 Xin Peng Gang Liu Yue Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第9期2691-2713,共23页
The large dual-channel wide-bodied aircraft has a long range and a high cruise Mach number.Therefore,its aerodynamic design requires a high level ofwind tunnel test refinement.Based on the requirements of aerodynamic ... The large dual-channel wide-bodied aircraft has a long range and a high cruise Mach number.Therefore,its aerodynamic design requires a high level ofwind tunnel test refinement.Based on the requirements of aerodynamic design for the future wide-bodied aircraft and the characteristics of high-speed wind tunnel tests,the error theory is introduced to analyze the factors affecting the accuracy of the test data.This study carries out a series of research on the improvement of refined aerodynamic test technology in an FL-26 wind tunnel,including design and optimization of the support system of wide-bodied aircraft,model attitude angle measurement,Mach number control accuracy,measurement and control system stability,test data correction and perfection,high-precision force balance and standard model development.In addition,the effect of the standard specification of the refined aerodynamic test is investigated to improve the data quality.The research findings have been applied in the standard model test and subsequent models of wide-bodied aircraft.The results show that whenMach numbers are less than 0.9,the control accuracy of Mach numbers in the FL-26 wind tunnel is smaller than 0.001 and the measurement error of attack angle is smaller than 0.01°.Therefore,it has the ability to correct the data influenced by factors,such as support/wall interference,model deformation,floating resistance and airflow deflection angle.The repeatability accuracy of the standard model’s comparison test shows that the lift coefficient is less than or equal to 0.0012,the drag coefficient is less than or equal to 0.00004,pitching moment coefficient is less than or equal to 0.0004.The bending resolution of the model’s deformation measurement is less than 0.2 mm,and the tensional deformation is smaller than 0.04°.The revised aerodynamic data and model deformation measurement results have good agreement with that of the ETW wind tunnel.The results demonstrate that the improved technology presented in this paper can significantly enhance the refined aerodynamic test of wide-bodied aircraft. 展开更多
关键词 Wide-bodied aircraft standard model wind tunnel test REFINEMENT aerodynamic characteristics
下载PDF
Corrugated surface microparticles with chitosan and levofloxacin for improved aerodynamic performance
16
作者 Chang-Soo Han Ji-Hyun Kang +4 位作者 Eun hye Park Hyo-Jung Lee So-Jeong Jeong Dong-Wook Kim Chun-Woong Park 《Asian Journal of Pharmaceutical Sciences》 SCIE CAS 2023年第3期146-158,共13页
Corrugated surface microparticles comprising levofloxacin(LEV),chitosan and organic acid were prepared using the 3-combo spray drying method.The amount and the boiling point of the organic acid affected the degree of ... Corrugated surface microparticles comprising levofloxacin(LEV),chitosan and organic acid were prepared using the 3-combo spray drying method.The amount and the boiling point of the organic acid affected the degree of roughness.In this study,we tried to improve the aerodynamic performance and increase aerosolization by corrugated surface microparticle for lung drug delivery efficiency as dry powder inhaler.HMP175 L20 prepared with 175 mmol propionic acid solution was corrugated more than HMF175 L20 prepared with 175 mmol formic acid solution.The ACI and PIV results showed a significant increase in aerodynamic performance of corrugated microparticles.The FPF value of HMP175 L20 was 41.3%±3.9%compared with 25.6%±7.7%of HMF175 L20.Corrugated microparticles also showed better aerosolization,decreased x-axial velocity,and variable angle.Rapid dissolution of drug formulationswas observed in vivo.Lowdoses administered to the lungs achieved higher LEV concentrations in the lung fluid than high doses administered orally.Surface modification in the polymer-based formulation was achieved by controlling the evaporation rate and improving the inhalation efficiency of DPIs. 展开更多
关键词 CHITOSAN Organic acid LEVOFLOXACIN Corrugated surface aerodynamic performance
下载PDF
Dividing the transit wind speeds into intervals as a favorable methodology for analyzing the relationship between wind speed and the aerodynamic impedance of vegetation in semiarid grasslands
17
作者 LI Ruishen PEI Haifeng +4 位作者 ZHANG Shengwei LI Fengming LIN Xi WANG Shuai YANG Lin 《Journal of Arid Land》 SCIE CSCD 2023年第8期887-900,共14页
In grassland ecosystems,the aerodynamic roughness(Z0)and frictional wind speed(u*)contribute to the aerodynamic impedance of the grassland canopy.Thus,they are often used in the studies of wind erosion and evapotransp... In grassland ecosystems,the aerodynamic roughness(Z0)and frictional wind speed(u*)contribute to the aerodynamic impedance of the grassland canopy.Thus,they are often used in the studies of wind erosion and evapotranspiration.However,the effect of wind speed and grazing measures on the aerodynamic impedance of the grassland canopy has received less analysis.In this study,we monitored wind speeds at multiple heights in grazed and grazing-prohibited grasslands for 1 month in 2021,determined the transit wind speed at 2.0 m height by comparing wind speed differences at the same height in both grasslands,and divided these transit wind speeds at intervals of 2.0 m/s to analyze the effect of the transit wind speed on the relationship among Z0,u*,and wind speed within the grassland canopy.The results showed that dividing the transit wind speeds into intervals has a positive effect on the logarithmic fit of the wind speed profile.After dividing the transit wind speeds into intervals,the wind speed at 0.1 m height(V0.1)gradually decreased with the increase of Z0,exhibiting three distinct stages:a sharp change zone,a steady change zone,and a flat zone;while the overall trend of u*increased first and then decreased with the increase of V0.1.Dividing the transit wind speeds into intervals improved the fitting relationship between Z0 and V0.1 and changed their fitting functions in grazed and grazing-prohibited grasslands.According to the computational fluid dynamic results,we found that the number of tall-stature plants has a more significant effect on windproof capacity than their height.The results of this study contribute to a better understanding of the relationship between wind speed and the aerodynamic impedance of vegetation in grassland environments. 展开更多
关键词 transit wind speeds frictional wind speed aerodynamic roughness computational fluid dynamic(CFD) grazed grassland grazing-prohibited grassland
下载PDF
Aerodynamic shape and drag scaling law of a flexible fibre in a flowing medium
18
作者 Bo-Hua Sun Xiao-Lin Guo 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2023年第3期159-163,共5页
The study of a flexible body immersed in a flowing medium is one of the best way to find its aerodynamic shape.This Letter revisited the problem that was first studied by Alben et al.(Nature 420,479–481,2002).To dete... The study of a flexible body immersed in a flowing medium is one of the best way to find its aerodynamic shape.This Letter revisited the problem that was first studied by Alben et al.(Nature 420,479–481,2002).To determine the aerodynamic shape of the fibre,a simpler approach is proposed.A universal drag scaling law is obtained and the universality of the Alben-Shelley-Zhang scaling law is confirmed by using dimensional analysis.A complete Maple code is provided for finding aerodynamic shape of the fibre in the flowing medium. 展开更多
关键词 Flexible fibre Flow medium aerodynamic shape Drag Scaling law
下载PDF
Influence of the Blade Bifurcated Tip on the Correlation between Wind Turbine Wheel Vibration and Aerodynamic Noise
19
作者 Baohua Li Yuanjun Dai +2 位作者 Jingan Cui Cong Wang Kunju Shi 《Fluid Dynamics & Materials Processing》 EI 2023年第12期3033-3043,共11页
To reduce the vibration and aerodynamic noise of wind turbines,a new design is proposed relying on a blade with a bifurcated apex or tip.The performances of this wind turbine wheel are tested at the entrance of a DC(d... To reduce the vibration and aerodynamic noise of wind turbines,a new design is proposed relying on a blade with a bifurcated apex or tip.The performances of this wind turbine wheel are tested at the entrance of a DC(direct-action)wind tunnel for different blade tip angles and varying centrifugal force and aerodynamic loads.The test results indicate that the bifurcated apex can reduce the vibration acceleration amplitude and the vibration fre-quency of the wind wheel.At the same time,the bifurcated apex can lower the maximum sound pressure level corresponding to the rotating fundamental frequency of the wind wheel.According to all thesefindings,the tip angle of the bifurcated apex is the main factor enhancing the effect of the modification. 展开更多
关键词 Wind turbine bifurcated apex wind wheel vibration aerodynamic noise
下载PDF
A Numerical Investigation on the Influence of the Circular Ring on the Aerodynamic Noise Generated by a Cooling Fan
20
作者 Jun Feng Tao Bian +1 位作者 Qianpeng Han Bing Wang 《Fluid Dynamics & Materials Processing》 EI 2023年第1期1-14,共14页
The influence of the width of the circular ring of a car cooling fan on the aerodynamic noise is investigated numerically through the determination of the overall sound pressure level(OASPL).The results demonstrate th... The influence of the width of the circular ring of a car cooling fan on the aerodynamic noise is investigated numerically through the determination of the overall sound pressure level(OASPL).The results demonstrate that when the circular rings cover near 2/3 of the width of the blade tips of the rotor in the axis direction,the rotor has the lowest OASPL and the related total pressure efficiency and flow mass rate are better than the corresponding values obtained for a reference rotor without a circular ring.With increasing the width of the circular ring in the axis direction,the tip vortex around the trailing edge of the blade tip becomes smaller and finally disappears.Meanwhile,a separated flow field arises gradually and then grows in size around the middle of the junction of the blade tips with the ring.When the circular rings cover nearly 2/3 s of the width of the blade tips of the fan in the axis direction,the extension of the separated flow around the blade’s tip attains a minimum. 展开更多
关键词 Cooling fan width of the circular ring aerodynamic noise CFD simulation
下载PDF
上一页 1 2 37 下一页 到第
使用帮助 返回顶部