Improving vehicle fuel consumption,performance and aerodynamic efficiency by drag reduction especially in heavy vehicles is one of the indispensable issues of automotive industry.In this work,the effects of adding app...Improving vehicle fuel consumption,performance and aerodynamic efficiency by drag reduction especially in heavy vehicles is one of the indispensable issues of automotive industry.In this work,the effects of adding append devices like deflector and cab vane corner on heavy commercial vehicle drag reduction were investigated.For this purpose,the vehicle body structure was modeled with various supplementary parts at the first stage.Then,computational fluid dynamic(CFD) analysis was utilized for each case to enhance the optimal aerodynamic structure at different longitudinal speeds for heavy commercial vehicles.The results show that the most effective supplementary part is deflector,and by adding this part,the drag coefficient is decreased considerably at an optimum angle.By adding two cab vane corners at both frontal edges of cab,a significant drag reduction is noticed.Back vanes and base flaps are simple plates which can be added at the top and side end of container and at the bottom with specific angle respectively to direct the flow and prevent the turbulence.Through the analysis of airflow and pressure distribution,the results reveal that the cab vane reduces fuel consumption and drag coefficient by up to 20 % receptively using proper deflector angle.Finally,by adding all supplementary parts at their optimized positions,41% drag reduction is obtained compared to the simple model.展开更多
Colonoscopy is the gold standard for colorectal cancer prevention; however, it is still an imperfect modality. Precancerous lesions can be lost during screening examinations, thus increasing the risk of interval cance...Colonoscopy is the gold standard for colorectal cancer prevention; however, it is still an imperfect modality. Precancerous lesions can be lost during screening examinations, thus increasing the risk of interval cancer. A variety of factors either patient-, or endoscopist dependent or even the procedure itself may contribute to loss of lesions. Sophisticated modalities including advanced technology endoscopes and add-on devices have been developed in an effort to eliminate colonoscopy's drawbacks and maximize its ability to detect potentially culprit polyps. Novel colonoscopes aim to widen the field of view. They incorporate more than one cameras enabling simultaneous image transmission. In that way the field of view can expand up to 330°. On the other hand a plethora of add-on devices attachable on the standard colonoscope promise to detect lesions in the proximal aspect of colonic folds either by offering a retrograde view of the lumen or by straightening the haustral folds during withdrawal. In this minireview we discuss how these recent advances affect colonoscopy performance by improving its quality indicators(cecal intubation rate, adenoma detection rate) and other metrics(polyp detection rate, adenomas per colonoscopy, polyp/adenoma miss rate) associated with examination's outcomes.展开更多
Aerodynamic noise of High-Lift Devices(HLDs)is one of the main sources of airframe noise,and has immediate impacts on the airworthiness certification,environmental protection and security of commercial aircraft.In thi...Aerodynamic noise of High-Lift Devices(HLDs)is one of the main sources of airframe noise,and has immediate impacts on the airworthiness certification,environmental protection and security of commercial aircraft.In this study,a novel hybrid method is proposed for the aerodynamic noise prediction of HLD.A negative Spalart-Allmaras(S-A)turbulence model based Improved Delayed Detached Eddy Simulation(IDDES)method coupling with AFT-2017b transition model is developed,in order to elaborately simulate the complex flow field around the HLD and thus obtain the information of acoustic sources.A Farassat-Kirchhoff hybrid method is developed to filter the spurious noise sources caused by the vortex motions in solving the Ffowcs Williams-Hawkings(FW-H)equation with permeable integral surfaces,and accurately predict the far-field noise radiation of the HLD.The results of the 30P30N HLD indicate that,the computational Sound Pressure Levels(SPLs)obtained by the Farassat-Kirchhoff hybrid method conform well with the experimental ones in the spectrum for the given observation point,and are more accurate than those obtained by the Farassat 1A method.Based on the hybrid method,the acoustic directivity of the HLD of a commercial aircraft is obtained,and the variation of the SPLs in the spectrum with the deflection angle of the slat is analyzed.展开更多
The present study performed a numerical investigation to explore the performance enhancement of a co-flow jet(CFJ)airfoil with simple high-lift device configuration,with a specific goal to examine the feasibility and ...The present study performed a numerical investigation to explore the performance enhancement of a co-flow jet(CFJ)airfoil with simple high-lift device configuration,with a specific goal to examine the feasibility and capability of the proposed configuration for low-speed take-off and landing.Computations have been accomplished by an in-house-programmed Reynoldsaveraged Navier-Stokes solver enclosed by k-ωshear stress transport turbulence model.Three crucial geometric parameters,viz.,injection slot location,suction slot location and its angle were selected for the sake of revealing their effects on aerodynamic lift,drag,power consumption and equivalent lift-to-drag ratio.Results show that using simple high-lift devices on CFJ airfoil can significantly augment the aerodynamic associated lift and efficiency which evidences the feasibility of CFJ for short take-off and landing with small angle of attack.The injection and suction slot locations are more influential with respect to the aerodynamic performance of CFJ airfoil compared with the suction slot angle.The injection location is preferable to be located in the downstream of the pressure suction peak on leading edge to reduce the power expenditure of the pumping system for a relative higher equivalent lift-to-drag ratio.Another concluded criterion is that the suction slot should be oriented on the trailing edge flap for achieving more aerodynamic gain,meanwhile,carefully selecting this location is crucial in determining the aerodynamic enhancement of CFJ airfoil with deflected flaps.展开更多
Bogies are responsible for a significant amount of aerodynamic resistance and noise,both of which negatively affect high-speed train performance and passenger comfort.In the present study,the passive control method is...Bogies are responsible for a significant amount of aerodynamic resistance and noise,both of which negatively affect high-speed train performance and passenger comfort.In the present study,the passive control method is applied in designing the bogie cabins of a high-speed train to improve its aerodynamic characteristics.Two passive control measures are introduced,namely,adding a spoiler and creating diversion grooves near the bogie cabins.Furthermore,the aerodynamic and aeroacoustic characteristics of a high-speed train operating at 350 km/h under different control strategies are numerically investigated using the improved-delayed-detached-eddy simulation(IDDES)and the acoustic finite element method(FEM).The impacts of passive control devices on drag reduction,slipstream,and aerodynamic noise are presented and discussed.Numerical results reveal that the passive control devices have a major effect on the slipstream around the train.The amplitude of the fluctuating pressure is higher in the first half of the train than in the second half.The first bogie has the maximum amplitude of the acoustic pressure for both the train with and without passive devices.In the far field,the spoiler installation and placement of the diversion grooves in the front of the bogie cabin can significantly reduce aerodynamic drag and noise.Hence,as shown in this study,using passive control methods to improve the aerodynamic and aeroacoustic properties of high-speed trains can be a viable option.展开更多
文摘Improving vehicle fuel consumption,performance and aerodynamic efficiency by drag reduction especially in heavy vehicles is one of the indispensable issues of automotive industry.In this work,the effects of adding append devices like deflector and cab vane corner on heavy commercial vehicle drag reduction were investigated.For this purpose,the vehicle body structure was modeled with various supplementary parts at the first stage.Then,computational fluid dynamic(CFD) analysis was utilized for each case to enhance the optimal aerodynamic structure at different longitudinal speeds for heavy commercial vehicles.The results show that the most effective supplementary part is deflector,and by adding this part,the drag coefficient is decreased considerably at an optimum angle.By adding two cab vane corners at both frontal edges of cab,a significant drag reduction is noticed.Back vanes and base flaps are simple plates which can be added at the top and side end of container and at the bottom with specific angle respectively to direct the flow and prevent the turbulence.Through the analysis of airflow and pressure distribution,the results reveal that the cab vane reduces fuel consumption and drag coefficient by up to 20 % receptively using proper deflector angle.Finally,by adding all supplementary parts at their optimized positions,41% drag reduction is obtained compared to the simple model.
文摘Colonoscopy is the gold standard for colorectal cancer prevention; however, it is still an imperfect modality. Precancerous lesions can be lost during screening examinations, thus increasing the risk of interval cancer. A variety of factors either patient-, or endoscopist dependent or even the procedure itself may contribute to loss of lesions. Sophisticated modalities including advanced technology endoscopes and add-on devices have been developed in an effort to eliminate colonoscopy's drawbacks and maximize its ability to detect potentially culprit polyps. Novel colonoscopes aim to widen the field of view. They incorporate more than one cameras enabling simultaneous image transmission. In that way the field of view can expand up to 330°. On the other hand a plethora of add-on devices attachable on the standard colonoscope promise to detect lesions in the proximal aspect of colonic folds either by offering a retrograde view of the lumen or by straightening the haustral folds during withdrawal. In this minireview we discuss how these recent advances affect colonoscopy performance by improving its quality indicators(cecal intubation rate, adenoma detection rate) and other metrics(polyp detection rate, adenomas per colonoscopy, polyp/adenoma miss rate) associated with examination's outcomes.
基金This study was co-supported by the Shanghai Pujiang Program,China(No.20PJ1402000)the Open Project of Key Laboratory of Aerodynamic Noise Control,China(No.ANCL20200302)Shanghai Key Laboratory of Aircraft Engine Digital Twin,China(No.HT-6FTX 0021-2021).
文摘Aerodynamic noise of High-Lift Devices(HLDs)is one of the main sources of airframe noise,and has immediate impacts on the airworthiness certification,environmental protection and security of commercial aircraft.In this study,a novel hybrid method is proposed for the aerodynamic noise prediction of HLD.A negative Spalart-Allmaras(S-A)turbulence model based Improved Delayed Detached Eddy Simulation(IDDES)method coupling with AFT-2017b transition model is developed,in order to elaborately simulate the complex flow field around the HLD and thus obtain the information of acoustic sources.A Farassat-Kirchhoff hybrid method is developed to filter the spurious noise sources caused by the vortex motions in solving the Ffowcs Williams-Hawkings(FW-H)equation with permeable integral surfaces,and accurately predict the far-field noise radiation of the HLD.The results of the 30P30N HLD indicate that,the computational Sound Pressure Levels(SPLs)obtained by the Farassat-Kirchhoff hybrid method conform well with the experimental ones in the spectrum for the given observation point,and are more accurate than those obtained by the Farassat 1A method.Based on the hybrid method,the acoustic directivity of the HLD of a commercial aircraft is obtained,and the variation of the SPLs in the spectrum with the deflection angle of the slat is analyzed.
基金supported by the National Natural Science Foundation of China(No.11672133)the Research Funds for Central Universities(No.kfjj20180104)support from Rotor Aerodynamics Key Laboratory(No.RAL20190202-2)。
文摘The present study performed a numerical investigation to explore the performance enhancement of a co-flow jet(CFJ)airfoil with simple high-lift device configuration,with a specific goal to examine the feasibility and capability of the proposed configuration for low-speed take-off and landing.Computations have been accomplished by an in-house-programmed Reynoldsaveraged Navier-Stokes solver enclosed by k-ωshear stress transport turbulence model.Three crucial geometric parameters,viz.,injection slot location,suction slot location and its angle were selected for the sake of revealing their effects on aerodynamic lift,drag,power consumption and equivalent lift-to-drag ratio.Results show that using simple high-lift devices on CFJ airfoil can significantly augment the aerodynamic associated lift and efficiency which evidences the feasibility of CFJ for short take-off and landing with small angle of attack.The injection and suction slot locations are more influential with respect to the aerodynamic performance of CFJ airfoil compared with the suction slot angle.The injection location is preferable to be located in the downstream of the pressure suction peak on leading edge to reduce the power expenditure of the pumping system for a relative higher equivalent lift-to-drag ratio.Another concluded criterion is that the suction slot should be oriented on the trailing edge flap for achieving more aerodynamic gain,meanwhile,carefully selecting this location is crucial in determining the aerodynamic enhancement of CFJ airfoil with deflected flaps.
基金This work was supported by the Youth Innovation Promotion Association of the Chinese Academy of Sciences (Grant No. 2019020)the Strategic Priority Research Program of the Chinese Academy of Sciences (Class B) (Grant No. XDB22020000)Informatization Plan of the Chinese Academy of Sciences (Grant No. XXH13506-204).
文摘Bogies are responsible for a significant amount of aerodynamic resistance and noise,both of which negatively affect high-speed train performance and passenger comfort.In the present study,the passive control method is applied in designing the bogie cabins of a high-speed train to improve its aerodynamic characteristics.Two passive control measures are introduced,namely,adding a spoiler and creating diversion grooves near the bogie cabins.Furthermore,the aerodynamic and aeroacoustic characteristics of a high-speed train operating at 350 km/h under different control strategies are numerically investigated using the improved-delayed-detached-eddy simulation(IDDES)and the acoustic finite element method(FEM).The impacts of passive control devices on drag reduction,slipstream,and aerodynamic noise are presented and discussed.Numerical results reveal that the passive control devices have a major effect on the slipstream around the train.The amplitude of the fluctuating pressure is higher in the first half of the train than in the second half.The first bogie has the maximum amplitude of the acoustic pressure for both the train with and without passive devices.In the far field,the spoiler installation and placement of the diversion grooves in the front of the bogie cabin can significantly reduce aerodynamic drag and noise.Hence,as shown in this study,using passive control methods to improve the aerodynamic and aeroacoustic properties of high-speed trains can be a viable option.