In order to solve the mismatched uncertainties of a class of nonlinearsystems, a control method of sliding mode control (SMC) based on the backstepping design isproposed. It introduces SMC in to the last step of backs...In order to solve the mismatched uncertainties of a class of nonlinearsystems, a control method of sliding mode control (SMC) based on the backstepping design isproposed. It introduces SMC in to the last step of backstepping design to modify the backsteppingalgorithm. This combination not only enables the generalization of the backstepping design to beapplied to more general nonlinear systems, but also makes the SMC method become effective in solvingthe mismatched uncertainties. The SMC based on the backstepping design is applied to the flightcontrol system design of an aerodynamic missile. The control system is researched throughsimulation. The simulation results show the effectiveness of the proposed control method.展开更多
In modem missile design, the operation of a missile aerodynamics with angles of attack is required to serve a demand on the maneuverability. The key aero-physics is the development of vortices and its interaction to t...In modem missile design, the operation of a missile aerodynamics with angles of attack is required to serve a demand on the maneuverability. The key aero-physics is the development of vortices and its interaction to the control surface such as wing and fins. This paper thus presents the investigation of the missile flow field at 4° and 8° degrees of angles of attack. The Mach numbers for both case were varied from 0.6 to 5.5. Here, the Steady Reynolds-Averaged Navier-Stokes (SRANS) equations with standard κ-ε turbulence model were selected. The numerical results of aerodynamics coefficients (both force and moment) were compared against semi-empirical data computed using Missile DatCOM. The results revealed the development of vortices observed and their interaction with fin at the rear part of the missile.展开更多
文摘In order to solve the mismatched uncertainties of a class of nonlinearsystems, a control method of sliding mode control (SMC) based on the backstepping design isproposed. It introduces SMC in to the last step of backstepping design to modify the backsteppingalgorithm. This combination not only enables the generalization of the backstepping design to beapplied to more general nonlinear systems, but also makes the SMC method become effective in solvingthe mismatched uncertainties. The SMC based on the backstepping design is applied to the flightcontrol system design of an aerodynamic missile. The control system is researched throughsimulation. The simulation results show the effectiveness of the proposed control method.
文摘In modem missile design, the operation of a missile aerodynamics with angles of attack is required to serve a demand on the maneuverability. The key aero-physics is the development of vortices and its interaction to the control surface such as wing and fins. This paper thus presents the investigation of the missile flow field at 4° and 8° degrees of angles of attack. The Mach numbers for both case were varied from 0.6 to 5.5. Here, the Steady Reynolds-Averaged Navier-Stokes (SRANS) equations with standard κ-ε turbulence model were selected. The numerical results of aerodynamics coefficients (both force and moment) were compared against semi-empirical data computed using Missile DatCOM. The results revealed the development of vortices observed and their interaction with fin at the rear part of the missile.