期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Dynamic Responses of A Semi-Type Offshore Floating Wind Turbine During Normal State and Emergency Shutdown 被引量:5
1
作者 胡志强 李良 +2 位作者 王晋 胡秋皓 沈马成 《China Ocean Engineering》 SCIE EI CSCD 2016年第1期97-112,共16页
This paper addresses joint wind-wave induced dynamic responses of a semi-type offshore floating wind turbine(OFWT) under normal states and fault event conditions. The analysis in this paper is conducted in time doma... This paper addresses joint wind-wave induced dynamic responses of a semi-type offshore floating wind turbine(OFWT) under normal states and fault event conditions. The analysis in this paper is conducted in time domain, using an aero-hydro-servo-elastic simulation code-FAST. Owing to the unique viscous features of the reference system, the original viscous damping model implemented in FAST is replaced with a quadratic one to gain an accurate capture of viscous effects. Simulation cases involve free-decay motion in still water, steady motions in the presence of regular waves and wind as well as dynamic response in operational sea states with and without wind. Simulations also include the cases for transient responses induced by fast blade pitching after emergency shutdown. The features of platform motions, local structural loads and a typical mooring line tension force under a variety of excitations are obtained and investigated. 展开更多
关键词 offshore floating wind turbine dynamic responses semi-type aerodynamic effects effective RAO emergency shutdown
下载PDF
Investigation on the Forced Response of a Radial Turbine under Aerodynamic Excitations 被引量:3
2
作者 MA Chaochen HUANG Zhi QI Mingxu 《Journal of Thermal Science》 SCIE EI CAS CSCD 2016年第2期130-137,共8页
Rotor blades in a radial turbine with nozzle guide vanes typically experience harmonic aerodynamic excitations due to the rotor stator interaction. Dynamic stresses induced by the harmonic excitations can result in hi... Rotor blades in a radial turbine with nozzle guide vanes typically experience harmonic aerodynamic excitations due to the rotor stator interaction. Dynamic stresses induced by the harmonic excitations can result in high cycle fatigue(HCF) of the blades. A reliable prediction method for forced response issue is essential to avoid the HCF problem. In this work, the forced response mechanisms were investigated based on a fluid structure interaction(FSI) method. Aerodynamic excitations were obtained by three-dimensional unsteady computational fluid dynamics(CFD) simulation with phase shifted periodic boundary conditions. The first two harmonic pressures were determined as the primary components of the excitation and applied to finite element(FE) model to conduct the computational structural dynamics(CSD) simulation. The computed results from the harmonic forced response analysis show good agreement with the predictions of Singh's advanced frequency evaluation(SAFE) diagram. Moreover, the mode superposition method used in FE simulation offers an efficient way to provide quantitative assessments of mode response levels and resonant strength. 展开更多
关键词 radial turbine forced response aerodynamic excitation FSI SAFE diagram
原文传递
Effects of leaf response velocity on spray deposition with an air-assisted orchard sprayer 被引量:1
3
作者 Jun Li Zhiqiang Li +3 位作者 Yakun Ma Huajun Cui Zhou Yang Huazhong Lu 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2021年第1期123-132,共10页
The interaction between leaves and airflow has a direct effect on the droplet deposition characteristics of the leaf canopy.In order to make clear the mechanism of droplet deposition in terms of the interaction betwee... The interaction between leaves and airflow has a direct effect on the droplet deposition characteristics of the leaf canopy.In order to make clear the mechanism of droplet deposition in terms of the interaction between the droplets and leaves from the point of the leaf aerodynamic response velocity,the leaf movement under different airflow velocities and the influence of the leaf aerodynamic response on droplet coverage ratio were investigated.The effect of the aerodynamic response velocity of a leaf on the droplet deposition of the leaf surface was investigated.The aerodynamic characteristics of the leaf were analyzed theoretically.Boundary layer theory from fluid mechanics was used to develop a model of the leaf aerodynamic response velocity to nonperiodic excitations based on a convolution integral method.Target leaf aerodynamic velocities were detected using a high-speed camera,and the results indicated that the modeled leaf aerodynamic response velocity matched the measured values.At given conditions of spray liquid and leaf surface texture,the spray test showed that the droplet coverage ratio was influenced by the leaf aerodynamic response velocity,the droplet coverage ratio increased and then decreased with the leaf response velocity.Through analyze four droplets deposition state,the highest droplet deposition ratio and best deposition state on the leaf surface occur when the leaf aerodynamic response velocity was less than 0.14 m/s.According to the analysis of droplet deposition states,the uniformity of the droplet size and quantity distribution of droplets on the leaf surface related to the leaf aerodynamic response velocity.The results can provide a basis for the design and optimization of orchard air sprayers. 展开更多
关键词 air-assisted spray leaf wind vibration leaf aerodynamic response velocity droplet deposition states droplet retention ORCHARD
原文传递
A Method for the Determination of Turbulence Intensity by Means of a Fast Response Pressure Probe and its Application in a LP Turbine 被引量:3
4
作者 Davide Lengani Berardo Paradiso Andreas Marn 《Journal of Thermal Science》 SCIE EI CAS CSCD 2012年第1期21-31,共11页
This paper describes the measurements and the post-processing procedure adopted for the determination of the turbulence intensity in a low pressure turbine (LPT) by means of a single sensor fast response aerodynamic p... This paper describes the measurements and the post-processing procedure adopted for the determination of the turbulence intensity in a low pressure turbine (LPT) by means of a single sensor fast response aerodynamic pressure probe. The rig was designed in cooperation with MTU Aero Engines and considerable efforts were put into the adjustment of all relevant model parameters. Blade count ratio, airfoil aspect ratio, reduced massflow, reduced speed, inlet turbulence intensity and Reynolds numbers were chosen to reproduce the full scale LP turbine. Measurements were performed adopting a phase-locked acquisition technique in order to provide the time resolved flow field downstream of the turbine rotor. The total pressure random fluctuations are obtained by selectively filtering, in the frequency domain, the deterministic unsteadiness due to the rotor blades and coherent structures. The turbulence intensity is derived from the inverse Fourier transform and the correlations between total pressure and velocity fluctuations. The determination of the turbulence intensity allows the discussion of the interaction processes between the stator and rotor for engine-representative operating conditions of the turbine. 展开更多
关键词 TURBULENCE fast response aerodynamic pressure probe low pressure turbine.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部