It is a major challenge for the airframe-inlet design of modern combat aircrafts,as the flow and electromagnetic wave propagation in the inlet of stealth aircraft are very complex.In this study,an aerodynamic/stealth ...It is a major challenge for the airframe-inlet design of modern combat aircrafts,as the flow and electromagnetic wave propagation in the inlet of stealth aircraft are very complex.In this study,an aerodynamic/stealth optimization design method for an S-duct inlet is proposed.The upwind scheme is introduced to the aerodynamic adjoint equation to resolve the shock wave and flow separation.The multilevel fast multipole algorithm(MLFMA)is utilized for the stealth adjoint equation.A dorsal S-duct inlet of flying wing layout is optimized to improve the aerodynamic and stealth characteristics.Both the aerodynamic and stealth characteristics of the inlet are effectively improved.Finally,the optimization results are analyzed,and it shows that the main contradiction between aerodynamic characteristics and stealth characteristics is the centerline and crosssectional area.The S-duct is smoothed,and the cross-sectional area is increased to improve the aerodynamic characteristics,while it is completely opposite for the stealth design.The radar cross section(RCS)is reduced by phase cancelation for low frequency conditions.The method is suitable for the aerodynamic/stealth design of the aircraft airframe-inlet system.展开更多
Multi-objective optimization for the optimum shape design is introduced in aerodynamics using the Game theory. Based on the control theory, the employed optimizer and the negative feedback are used to implement the co...Multi-objective optimization for the optimum shape design is introduced in aerodynamics using the Game theory. Based on the control theory, the employed optimizer and the negative feedback are used to implement the constraints. All the constraints are satisfied implicitly and automatically in the design. Furthermore,the above methodology is combined with a formulation derived from the Game theory to treat multi-point airfoil optimization. Airfoil shapes are optimized according to various aerodynamics criteria. In the symmetric Nash game, each “player” is responsible for one criterion, and the Nash equilibrium provides a solution to the multipoint optimization. Design results confirm the efficiency of the method.展开更多
It is one of the most efficient ways to greatly improve aero-engines' performance by utilizing vaneless counterrotating turbine(VCRT) technology.To supply sufficient power,VCRT turns to be high Mach number,large f...It is one of the most efficient ways to greatly improve aero-engines' performance by utilizing vaneless counterrotating turbine(VCRT) technology.To supply sufficient power,VCRT turns to be high Mach number,large flow angle at high-pressure turbine(HPT) rotor exit,and low blade camber angle,which increase difficulties to turbine design.As the axial velocity ratio of HPT rotor is much larger than the conventional ones,the optimal selection of VCRT velocity triangles based on theoretical analysis is developed,and how the efficiency varied by HPT stator/rotor exit flow angle is also figured out.The key points to design a high efficient practicable VCRT are to select velocity triangles that are characterized by low flow coefficient,high outlet flow angle and large axial velocity ratio of HPT rotor.Meanwhile,performance comparison between convergent blade and convergent-divergent blade shows the latter is more appropriate for VCRT.展开更多
Compared with the traditional train,the operational speed of the high-speed train has largely improved,and thedynamicenvironmentofthetrainhaschangedfromoneof mechanical domination to one of aerodynamic domination.The ...Compared with the traditional train,the operational speed of the high-speed train has largely improved,and thedynamicenvironmentofthetrainhaschangedfromoneof mechanical domination to one of aerodynamic domination.The aerodynamic problem has become the key technological challenge of high-speed trains and significantl affects the economy,environment,safety,and comfort.In this paper,the relationships among the aerodynamic design principle,aerodynamic performance indexes,and design variables are firs studied,and the research methods of train aerodynamics are proposed,including numerical simulation,a reducedscale test,and a full-scale test.Technological schemes of train aerodynamics involve the optimization design of the streamlined head and the smooth design of the body surface.Optimization design of the streamlined head includes conception design,project design,numerical simulation,and a reduced-scale test.Smooth design of the body surface is mainly used for the key parts,such as electric-current collecting system,wheel truck compartment,and windshield.The aerodynamic design method established in this paper has been successfully applied to various high-speed trains(CRH380A,CRH380 AM,CRH6,CRH2 G,and the Standard electric multiple unit(EMU)) that have met expected design objectives.The research results can provide an effective guideline for the aerodynamic design of high-speed trains.展开更多
An aerodynamic design method and corresponding codes are developed for three-dimensional multi lifting surfaces at transonic flow. It is based on the "iterative residual correction" concept that is successfully used...An aerodynamic design method and corresponding codes are developed for three-dimensional multi lifting surfaces at transonic flow. It is based on the "iterative residual correction" concept that is successfully used for transonic wing design and subsonic multi-lifting surface design. The up-wind scheme is introduced into governing equations of multi-lifting surface design method and automatically acted when supersonic flow appears on the surface. A series of interface codes are programmed, including a target-pressure modification tool. Using the improved inverse aerodynamic design code, TAU code and interface codes, the transonic multi-lifting aerodynamic design software system is founded. Two cases of canard-wing configuration have been performed to validate the method and codes. The results show that the convergence of analysis/design iteration is very good at higher speed transonic flow.展开更多
We present a new aerodynamic design method based on the lattice Boltzmann method (LBM) and the adjoint approach. The flow field and the adjoint equation are numerically simulated by the GILBM (generalized form of i...We present a new aerodynamic design method based on the lattice Boltzmann method (LBM) and the adjoint approach. The flow field and the adjoint equation are numerically simulated by the GILBM (generalized form of interpolation supplemented LBM) on non-uniform meshes. The first-order approximation for the equilibrium dis- tribution function on the boundary is proposed to diminish the singularity of boundary conditions. Further, a new treatment of the solid boundary in the LBM is described par- ticularly for the airfoil optimization design problem. For a given objective function, the adjoint equation and its boundary conditions are derived analytically. The feasibility and accuracy of the new approach have been perfectly validated by the design optimization of NACA0012 airfoil.展开更多
This paper presents an aerodynamic design of a small transonic fan by 3D viscous RNS solver combined with genetic algorithms.The aerodynamic design system based on the 3D viscous RNS solver reduces the dependency on t...This paper presents an aerodynamic design of a small transonic fan by 3D viscous RNS solver combined with genetic algorithms.The aerodynamic design system based on the 3D viscous RNS solver reduces the dependency on the design experience for designers.Furthermore the optimum with genetic algorithms is an effective method for improving the transonic fan performance as a part of the design system.The design result showed that the transonic fan designed by this method reaches the design requirement even with more efficiency value.展开更多
The concept of joined-wing aircraft with nonplanar wings as conceived and patented by Wolkovitch is attractive due to various advantages such as light weight, high stiffness, low induced drag, high trimmed CLmax, redu...The concept of joined-wing aircraft with nonplanar wings as conceived and patented by Wolkovitch is attractive due to various advantages such as light weight, high stiffness, low induced drag, high trimmed CLmax, reduced wetted area and parasite drag and good stability and control, which have been supported by independent analyses, design studies and wind tunnel tests. With such foreseen advantages, the present work is carried out to design joined-wing business-jet aircraft and study and investigate its advantages and benefits as compared to the current available conventional business jet of similar size, passenger and payload capacity. In particular, the work searches for a conceptual design of joined-wing configured business-jet aircraft that possesses more superior characteristics and better aerodynamic performance in terms of increased lift and reduced drag, and lighter than the conventional business jet of similar size. Another significant objective of this work is to prove that the added rigidity possessed by the joined wing configuration can contribute to weight reduction.展开更多
In the past two decades,the world’s unmanned aerial vehicle(UAV)industry has developed rapidly.Various kinds of UAVs have been used in military and civilian fields.Based on the characteristics of UAVs and the develop...In the past two decades,the world’s unmanned aerial vehicle(UAV)industry has developed rapidly.Various kinds of UAVs have been used in military and civilian fields.Based on the characteristics of UAVs and the development of aerodynamics,this article analyzes the development of aerodynamic optimization design and dynamic numerical simulation technology,then lists engineering applications.Both aerodynamic optimization design and dynamic numerical simulation have greatly shortened the UAV design period and reduced the research and design cost.These two methods gradually replace traditional methods such as wind tunnel test.展开更多
Transonic tandem cascades can effectively increase the working load,and this feature conforms with the requirement of the large loads and pressure ratios of modern axial compressors.This paper presents an optimization...Transonic tandem cascades can effectively increase the working load,and this feature conforms with the requirement of the large loads and pressure ratios of modern axial compressors.This paper presents an optimization strategy for a German Aerospace Center(DLR)transonic tandem cascade,with one front blade and two rear blades,at the inlet Mach number of 1.051.The tandem cascade profile was parameterized using 19 control parameters.Non-dominated sorting Genetic algorithm(NSGA-II)was used to drive the optimization evolution,with the computational fluid dynamics(CFD)-based cascade performances correction added for each generation.Inside the automatic optimization system,a pressure boundary condition iterative algorithm was developed for simulating the cascade performance with a constant supersonic inlet Mach number.The optimization results of the cascade showed that the deflection of the subsonic blade changed evidently.The shock wave intensity of the first blade row was weakened because of the reduced curvatures of the optimized pressure and suction sides of the front blade part and the downstream moved maximum thickness position.The total pressure losses decreased by 15.6%,20.9%and 19.9%with a corresponding increase in cascade static pressure ratio by 1.3%,1.8%and 1.7%,for the three cascade shapes in the Pareto solution sets under the near choke,the design and near stall conditions,respectively.展开更多
Developing the waverider based hypersonic vehicles is an inverse design process in which shape is developed from a known flow field by tracing of streamlines to form a stream surface. The flow field can be based on a ...Developing the waverider based hypersonic vehicles is an inverse design process in which shape is developed from a known flow field by tracing of streamlines to form a stream surface. The flow field can be based on a solution of Taylor Maccoll equation for a specified shock or cone angle. This Paper discusses the development of waverider shapes for hypersonic reentry vehicles.展开更多
Uncertainty impact of random geometric variations on the aerodynamic performance of low-pressure turbine blades is considerable,which is further amplified by the current ultra-high-lift design trend for weight reducti...Uncertainty impact of random geometric variations on the aerodynamic performance of low-pressure turbine blades is considerable,which is further amplified by the current ultra-high-lift design trend for weight reduction.Therefore,this uncertainty impact on ultra-highly loaded blades under extreme operational conditions near the margins with potential large-scale open separation is focused on in this study.It is demonstrated that this impact is significant,unfavourable,and nonlinear,which is clearly severer under extreme conditions.In addition to the overall attenuation and notable scattering of specific performance,the operational margins with open separation are also notably scattered with great risk of significant reduction.This scattering and nonlinearity are dominated by the variations in leading-edge thickness.The thinning of leading edge triggers local transition,enhancing downstream friction and reducing resistance to open separation,which is further exacerbated by operational deterioration.However,the opposite thickening yields less benefit,implying nonlinearity.This unfavourable impact highlights the need for robust aerodynamic design,where both a safer operational condition and a more robust blade are indispensable,i.e.,a compromise among performance,weight,and robustness.Besides the necessary limitation of loading levels,a mid-loaded design is recommended to reduce adverse pressure gradients in both the leading edge and rear region of the suction side,which helps to decrease the susceptibility of the transition and open separation to random perturbations.Similar improvements can also be achieved by appropriately thickening the leading edge.展开更多
High-speed trains have very complex running environments,which contain single-train running in open air,two-trains passing by in open air,single-train running in tunnel and two-trains passing by in tunnel.When the env...High-speed trains have very complex running environments,which contain single-train running in open air,two-trains passing by in open air,single-train running in tunnel and two-trains passing by in tunnel.When the environment wind appears,crosswind effects must be considered.Aerodynamic design of high-speed trains mainly aims at the drag,lift,moment,impulse pressure waves,aerodynamic noise,etc.at typical running conditions.In the paper,the aerodynamic design processes of CRH380A and 380B are introduced and the aerodynamic performances of different designs are analyzed and compared.Wind tunnel experiments and running tests indicate that the new generation of high-speed trains have excellent aerodynamic performances.展开更多
An efficient method employing a Principal Component Analysis(PCA)-Deep Belief Network(DBN)-based surrogate model is developed for robust aerodynamic design optimization in this study.In order to reduce the number of d...An efficient method employing a Principal Component Analysis(PCA)-Deep Belief Network(DBN)-based surrogate model is developed for robust aerodynamic design optimization in this study.In order to reduce the number of design variables for aerodynamic optimizations,the PCA technique is implemented to the geometric parameters obtained by parameterization method.For the purpose of predicting aerodynamic parameters,the DBN model is established with the reduced design variables as input and the aerodynamic parameters as output,and it is trained using the k-step contrastive divergence algorithm.The established PCA-DBN-based surrogate model is validated through predicting lift-to-drag ratios of a set of airfoils,and the results indicate that the PCA-DBN-based surrogate model is reliable and obtains more accurate predictions than three other surrogate models.Then the efficient optimization method is established by embedding the PCA-DBN-based surrogate model into an improved Particle Swarm Optimization(PSO)framework,and applied to the robust aerodynamic design optimizations of Natural Laminar Flow(NLF)airfoil and transonic wing.The optimization results indicate that the PCA-DBN-based surrogate model works very well as a prediction model in the robust optimization processes of both NLF airfoil and transonic wing.By employing the PCA-DBN-based surrogate model,the developed efficient method improves the optimization efficiency obviously.展开更多
This paper presents the fundamentals of a continuous adjoint method and the applications of this method to the aerodynamic design optimization of both external and internal flows.General formulation of the continuous ...This paper presents the fundamentals of a continuous adjoint method and the applications of this method to the aerodynamic design optimization of both external and internal flows.General formulation of the continuous adjoint equations and the corresponding boundary conditions are derived.With the adjoint method,the complete gradient information needed in the design optimization can be obtained by solving the governing flow equations and the corresponding adjoint equations only once for each cost function,regardless of the number of design parameters.An inverse design of airfoil is firstly performed to study the accuracy of the adjoint gradient and the effectiveness of the adjoint method as an inverse design method.Then the method is used to perform a series of single and multiple point design optimization problems involving the drag reduction of airfoil,wing,and wing-body configuration,and the aerodynamic performance improvement of turbine and compressor blade rows.The results demonstrate that the continuous adjoint method can efficiently and significantly improve the aerodynamic performance of the design in a shape optimization problem.展开更多
In aerodynamic optimization, global optimization methods such as genetic algorithms are preferred in many cases because of their advantage on reaching global optimum. However,for complex problems in which large number...In aerodynamic optimization, global optimization methods such as genetic algorithms are preferred in many cases because of their advantage on reaching global optimum. However,for complex problems in which large number of design variables are needed, the computational cost becomes prohibitive, and thus original global optimization strategies are required. To address this need, data dimensionality reduction method is combined with global optimization methods, thus forming a new global optimization system, aiming to improve the efficiency of conventional global optimization. The new optimization system involves applying Proper Orthogonal Decomposition(POD) in dimensionality reduction of design space while maintaining the generality of original design space. Besides, an acceleration approach for samples calculation in surrogate modeling is applied to reduce the computational time while providing sufficient accuracy. The optimizations of a transonic airfoil RAE2822 and the transonic wing ONERA M6 are performed to demonstrate the effectiveness of the proposed new optimization system. In both cases, we manage to reduce the number of design variables from 20 to 10 and from 42 to 20 respectively. The new design optimization system converges faster and it takes 1/3 of the total time of traditional optimization to converge to a better design, thus significantly reducing the overall optimization time and improving the efficiency of conventional global design optimization method.展开更多
Abstract A first study on the continuous adjoint formulation for aerodynamic optimization design of high pressure turbines based on S2 surface governed by the Euler equations with source terms is presented. The object...Abstract A first study on the continuous adjoint formulation for aerodynamic optimization design of high pressure turbines based on S2 surface governed by the Euler equations with source terms is presented. The objective function is defined as an integral function along the boundaries, and the adjoint equations and the boundary conditions are derived by introducing the adjoint variable vec- tors. The gradient expression of the objective function then includes only the terms related to phys- ical shape variations. The numerical solution of the adjoint equation is conducted by a finite- difference method with the Jameson spatial scheme employing the first and the third order dissipa- tive fluxes. A gradient-based aerodynamic optimization system is established by integrating the blade stagger angles, the stacking lines and the passage perturbation parameterization with the quasi-Newton method of Broyden Fletcher Goldfarb-Shanno (BFGS). The application of the continuous adjoint method is validated through a single stage high pressure turbine optimization case. The adiabatic efficiency increases from 0.8875 to 0.8931, whilst the mass flow rate and the pressure ratio remain almost unchanged. The optimization design is shown to reduce the passage vortex loss as well as the mixing loss due to the cooling air injection.展开更多
In the present paper,the design of a transonic centrifugal compressor stage with the inlet relative Mach number about 1.3 and detailed flow field investigation by three-dimensional CFD are described.Firstly the CFD pr...In the present paper,the design of a transonic centrifugal compressor stage with the inlet relative Mach number about 1.3 and detailed flow field investigation by three-dimensional CFD are described.Firstly the CFD program was validated by an experimental case.Then the preliminary aerodynamic design of stage completed through in-house one-dimensional code.Three types of impellers and two sets of stages were computed and analyzed.It can be found that the swept shape of leading edge has prominent influence on the performance and can enlarge the flow range.Similarly,the performance of the stage with swept impeller is better than others.The total pressure ratio and adiabatic efficiency of final geometry achieve 7:1 and 80% respectively.The vane diffuser with same airfoils along span increases attack angle at higher span,and the local flow structure and performance is deteriorated.展开更多
This paper describes the study on aerodynamics design optimization of turbomachinery blading developed by the authors at the Institute of Engineering Thermophysics, Chinese Academy of Sciences, during the recent few y...This paper describes the study on aerodynamics design optimization of turbomachinery blading developed by the authors at the Institute of Engineering Thermophysics, Chinese Academy of Sciences, during the recent few years. The present paper describes the aspects mainly on how to use a rapid approach of profiling a 3D blading and of grid generation for computation, a fast and accurate viscous computation method and an appropriate optimization methodology_ including a blade parameterization algorithm to optimize tm-bomachinery blading aerodynamically. Any blade configuration can be expressed by three curves, they are the camber lines, the thickness distributions and the radial stacking line, and then the blade geometry can be easily parameterized by a number of parameters with three polynomials. A gradient-based parameterization analytical method and a response surface method were applied herein for blade optimization. It was found that the optimization process provides reliable design for turbomachinery with reasonable computing time.展开更多
The design of an annular combustion chamber in a gas turbine engine is thebackbone of this paper.It is specifically designed for a low bypass turbofan engine in a jettrainer aircraft.The combustion chamber is position...The design of an annular combustion chamber in a gas turbine engine is thebackbone of this paper.It is specifically designed for a low bypass turbofan engine in a jettrainer aircraft.The combustion chamber is positioned in between the compressor and turbine.lt has to be designed based on the constant pressure,enthalpy addition process.The presentmethodology deals with the computation of the initial design parameters from benchmarking ofreal-time industry standards and arriving at optimized values.It is then studied for feasibilityand finalized.Then the various dimensions of the combustor are calculated based on differentempirical formulas.The air mass flow is then distributed across the zones of the combustor.The cooling requirement is met using the cooling holes.Finally the variations of parameters atdifferent points are calculated.The whole combustion chamber is modeled using Siemens NX8.0,a modeling software and presented.The model is then analyzed using various parametersat various stages and levels to determine the optimized design.The aerodynamic flowcharacteristics is simulated numerically by means of ANSYS 14.5 software suite.The air-fuelmixture,combustion-turbulence,thermal and cooling analysis is carried out.The analysis isperformed at various scenarios and compared.The results are then presented in image outputsand graphs.展开更多
文摘It is a major challenge for the airframe-inlet design of modern combat aircrafts,as the flow and electromagnetic wave propagation in the inlet of stealth aircraft are very complex.In this study,an aerodynamic/stealth optimization design method for an S-duct inlet is proposed.The upwind scheme is introduced to the aerodynamic adjoint equation to resolve the shock wave and flow separation.The multilevel fast multipole algorithm(MLFMA)is utilized for the stealth adjoint equation.A dorsal S-duct inlet of flying wing layout is optimized to improve the aerodynamic and stealth characteristics.Both the aerodynamic and stealth characteristics of the inlet are effectively improved.Finally,the optimization results are analyzed,and it shows that the main contradiction between aerodynamic characteristics and stealth characteristics is the centerline and crosssectional area.The S-duct is smoothed,and the cross-sectional area is increased to improve the aerodynamic characteristics,while it is completely opposite for the stealth design.The radar cross section(RCS)is reduced by phase cancelation for low frequency conditions.The method is suitable for the aerodynamic/stealth design of the aircraft airframe-inlet system.
文摘Multi-objective optimization for the optimum shape design is introduced in aerodynamics using the Game theory. Based on the control theory, the employed optimizer and the negative feedback are used to implement the constraints. All the constraints are satisfied implicitly and automatically in the design. Furthermore,the above methodology is combined with a formulation derived from the Game theory to treat multi-point airfoil optimization. Airfoil shapes are optimized according to various aerodynamics criteria. In the symmetric Nash game, each “player” is responsible for one criterion, and the Nash equilibrium provides a solution to the multipoint optimization. Design results confirm the efficiency of the method.
基金carried out under contract for the National Natural Science Foundation of China as part of the Free Application Project (No. 50776003)
文摘It is one of the most efficient ways to greatly improve aero-engines' performance by utilizing vaneless counterrotating turbine(VCRT) technology.To supply sufficient power,VCRT turns to be high Mach number,large flow angle at high-pressure turbine(HPT) rotor exit,and low blade camber angle,which increase difficulties to turbine design.As the axial velocity ratio of HPT rotor is much larger than the conventional ones,the optimal selection of VCRT velocity triangles based on theoretical analysis is developed,and how the efficiency varied by HPT stator/rotor exit flow angle is also figured out.The key points to design a high efficient practicable VCRT are to select velocity triangles that are characterized by low flow coefficient,high outlet flow angle and large axial velocity ratio of HPT rotor.Meanwhile,performance comparison between convergent blade and convergent-divergent blade shows the latter is more appropriate for VCRT.
基金supported by the National Key Technology R&D Program of China (Grant 2013BAG22Q00)the China Railway Science and Technology R&D Program (2015J009-D)
文摘Compared with the traditional train,the operational speed of the high-speed train has largely improved,and thedynamicenvironmentofthetrainhaschangedfromoneof mechanical domination to one of aerodynamic domination.The aerodynamic problem has become the key technological challenge of high-speed trains and significantl affects the economy,environment,safety,and comfort.In this paper,the relationships among the aerodynamic design principle,aerodynamic performance indexes,and design variables are firs studied,and the research methods of train aerodynamics are proposed,including numerical simulation,a reducedscale test,and a full-scale test.Technological schemes of train aerodynamics involve the optimization design of the streamlined head and the smooth design of the body surface.Optimization design of the streamlined head includes conception design,project design,numerical simulation,and a reduced-scale test.Smooth design of the body surface is mainly used for the key parts,such as electric-current collecting system,wheel truck compartment,and windshield.The aerodynamic design method established in this paper has been successfully applied to various high-speed trains(CRH380A,CRH380 AM,CRH6,CRH2 G,and the Standard electric multiple unit(EMU)) that have met expected design objectives.The research results can provide an effective guideline for the aerodynamic design of high-speed trains.
文摘An aerodynamic design method and corresponding codes are developed for three-dimensional multi lifting surfaces at transonic flow. It is based on the "iterative residual correction" concept that is successfully used for transonic wing design and subsonic multi-lifting surface design. The up-wind scheme is introduced into governing equations of multi-lifting surface design method and automatically acted when supersonic flow appears on the surface. A series of interface codes are programmed, including a target-pressure modification tool. Using the improved inverse aerodynamic design code, TAU code and interface codes, the transonic multi-lifting aerodynamic design software system is founded. Two cases of canard-wing configuration have been performed to validate the method and codes. The results show that the convergence of analysis/design iteration is very good at higher speed transonic flow.
基金Project supported by the National Basic Research Program of China(No.2014CB744100)the National Natural Science Foundation of China(Nos.61403245 and 91648119)the Shanghai Municipal Science and Technology Commision(No.14500500400)
文摘We present a new aerodynamic design method based on the lattice Boltzmann method (LBM) and the adjoint approach. The flow field and the adjoint equation are numerically simulated by the GILBM (generalized form of interpolation supplemented LBM) on non-uniform meshes. The first-order approximation for the equilibrium dis- tribution function on the boundary is proposed to diminish the singularity of boundary conditions. Further, a new treatment of the solid boundary in the LBM is described par- ticularly for the airfoil optimization design problem. For a given objective function, the adjoint equation and its boundary conditions are derived analytically. The feasibility and accuracy of the new approach have been perfectly validated by the design optimization of NACA0012 airfoil.
基金Sponsored by the Major State Basic Research Development Progrma of China(Grant No. 2007CB210104)
文摘This paper presents an aerodynamic design of a small transonic fan by 3D viscous RNS solver combined with genetic algorithms.The aerodynamic design system based on the 3D viscous RNS solver reduces the dependency on the design experience for designers.Furthermore the optimum with genetic algorithms is an effective method for improving the transonic fan performance as a part of the design system.The design result showed that the transonic fan designed by this method reaches the design requirement even with more efficiency value.
文摘The concept of joined-wing aircraft with nonplanar wings as conceived and patented by Wolkovitch is attractive due to various advantages such as light weight, high stiffness, low induced drag, high trimmed CLmax, reduced wetted area and parasite drag and good stability and control, which have been supported by independent analyses, design studies and wind tunnel tests. With such foreseen advantages, the present work is carried out to design joined-wing business-jet aircraft and study and investigate its advantages and benefits as compared to the current available conventional business jet of similar size, passenger and payload capacity. In particular, the work searches for a conceptual design of joined-wing configured business-jet aircraft that possesses more superior characteristics and better aerodynamic performance in terms of increased lift and reduced drag, and lighter than the conventional business jet of similar size. Another significant objective of this work is to prove that the added rigidity possessed by the joined wing configuration can contribute to weight reduction.
文摘In the past two decades,the world’s unmanned aerial vehicle(UAV)industry has developed rapidly.Various kinds of UAVs have been used in military and civilian fields.Based on the characteristics of UAVs and the development of aerodynamics,this article analyzes the development of aerodynamic optimization design and dynamic numerical simulation technology,then lists engineering applications.Both aerodynamic optimization design and dynamic numerical simulation have greatly shortened the UAV design period and reduced the research and design cost.These two methods gradually replace traditional methods such as wind tunnel test.
基金financially supported by the National Science and Technology Major Project(2017-II-0007-0021)。
文摘Transonic tandem cascades can effectively increase the working load,and this feature conforms with the requirement of the large loads and pressure ratios of modern axial compressors.This paper presents an optimization strategy for a German Aerospace Center(DLR)transonic tandem cascade,with one front blade and two rear blades,at the inlet Mach number of 1.051.The tandem cascade profile was parameterized using 19 control parameters.Non-dominated sorting Genetic algorithm(NSGA-II)was used to drive the optimization evolution,with the computational fluid dynamics(CFD)-based cascade performances correction added for each generation.Inside the automatic optimization system,a pressure boundary condition iterative algorithm was developed for simulating the cascade performance with a constant supersonic inlet Mach number.The optimization results of the cascade showed that the deflection of the subsonic blade changed evidently.The shock wave intensity of the first blade row was weakened because of the reduced curvatures of the optimized pressure and suction sides of the front blade part and the downstream moved maximum thickness position.The total pressure losses decreased by 15.6%,20.9%and 19.9%with a corresponding increase in cascade static pressure ratio by 1.3%,1.8%and 1.7%,for the three cascade shapes in the Pareto solution sets under the near choke,the design and near stall conditions,respectively.
文摘Developing the waverider based hypersonic vehicles is an inverse design process in which shape is developed from a known flow field by tracing of streamlines to form a stream surface. The flow field can be based on a solution of Taylor Maccoll equation for a specified shock or cone angle. This Paper discusses the development of waverider shapes for hypersonic reentry vehicles.
基金This study was supported by the National Science and Technology Major Project,China(No.J2019-II-0012-0032),which is gratefully acknowledged.
文摘Uncertainty impact of random geometric variations on the aerodynamic performance of low-pressure turbine blades is considerable,which is further amplified by the current ultra-high-lift design trend for weight reduction.Therefore,this uncertainty impact on ultra-highly loaded blades under extreme operational conditions near the margins with potential large-scale open separation is focused on in this study.It is demonstrated that this impact is significant,unfavourable,and nonlinear,which is clearly severer under extreme conditions.In addition to the overall attenuation and notable scattering of specific performance,the operational margins with open separation are also notably scattered with great risk of significant reduction.This scattering and nonlinearity are dominated by the variations in leading-edge thickness.The thinning of leading edge triggers local transition,enhancing downstream friction and reducing resistance to open separation,which is further exacerbated by operational deterioration.However,the opposite thickening yields less benefit,implying nonlinearity.This unfavourable impact highlights the need for robust aerodynamic design,where both a safer operational condition and a more robust blade are indispensable,i.e.,a compromise among performance,weight,and robustness.Besides the necessary limitation of loading levels,a mid-loaded design is recommended to reduce adverse pressure gradients in both the leading edge and rear region of the suction side,which helps to decrease the susceptibility of the transition and open separation to random perturbations.Similar improvements can also be achieved by appropriately thickening the leading edge.
基金supported by the National Basic Research Program of China ("973" Program) (Grant No. 2011CB711101)the National Hi-Tech Research and Development Program of China ("863" Project)(Grant No. 2009BAQG12A03)
文摘High-speed trains have very complex running environments,which contain single-train running in open air,two-trains passing by in open air,single-train running in tunnel and two-trains passing by in tunnel.When the environment wind appears,crosswind effects must be considered.Aerodynamic design of high-speed trains mainly aims at the drag,lift,moment,impulse pressure waves,aerodynamic noise,etc.at typical running conditions.In the paper,the aerodynamic design processes of CRH380A and 380B are introduced and the aerodynamic performances of different designs are analyzed and compared.Wind tunnel experiments and running tests indicate that the new generation of high-speed trains have excellent aerodynamic performances.
基金co-supported by Aeronautical Science Foundation of China(No.2015ZBP9002)China Scholarship Council。
文摘An efficient method employing a Principal Component Analysis(PCA)-Deep Belief Network(DBN)-based surrogate model is developed for robust aerodynamic design optimization in this study.In order to reduce the number of design variables for aerodynamic optimizations,the PCA technique is implemented to the geometric parameters obtained by parameterization method.For the purpose of predicting aerodynamic parameters,the DBN model is established with the reduced design variables as input and the aerodynamic parameters as output,and it is trained using the k-step contrastive divergence algorithm.The established PCA-DBN-based surrogate model is validated through predicting lift-to-drag ratios of a set of airfoils,and the results indicate that the PCA-DBN-based surrogate model is reliable and obtains more accurate predictions than three other surrogate models.Then the efficient optimization method is established by embedding the PCA-DBN-based surrogate model into an improved Particle Swarm Optimization(PSO)framework,and applied to the robust aerodynamic design optimizations of Natural Laminar Flow(NLF)airfoil and transonic wing.The optimization results indicate that the PCA-DBN-based surrogate model works very well as a prediction model in the robust optimization processes of both NLF airfoil and transonic wing.By employing the PCA-DBN-based surrogate model,the developed efficient method improves the optimization efficiency obviously.
基金supported by the National Natural Science Foundation of China(Grant Nos.51206003 and 51376009)the National Science Foundation for Post-doctoral Scientists of China(Grant Nos.2012M510267 and 2013T60035)
文摘This paper presents the fundamentals of a continuous adjoint method and the applications of this method to the aerodynamic design optimization of both external and internal flows.General formulation of the continuous adjoint equations and the corresponding boundary conditions are derived.With the adjoint method,the complete gradient information needed in the design optimization can be obtained by solving the governing flow equations and the corresponding adjoint equations only once for each cost function,regardless of the number of design parameters.An inverse design of airfoil is firstly performed to study the accuracy of the adjoint gradient and the effectiveness of the adjoint method as an inverse design method.Then the method is used to perform a series of single and multiple point design optimization problems involving the drag reduction of airfoil,wing,and wing-body configuration,and the aerodynamic performance improvement of turbine and compressor blade rows.The results demonstrate that the continuous adjoint method can efficiently and significantly improve the aerodynamic performance of the design in a shape optimization problem.
基金supported by the National Natural Science Foundation of China (No. 11502211)
文摘In aerodynamic optimization, global optimization methods such as genetic algorithms are preferred in many cases because of their advantage on reaching global optimum. However,for complex problems in which large number of design variables are needed, the computational cost becomes prohibitive, and thus original global optimization strategies are required. To address this need, data dimensionality reduction method is combined with global optimization methods, thus forming a new global optimization system, aiming to improve the efficiency of conventional global optimization. The new optimization system involves applying Proper Orthogonal Decomposition(POD) in dimensionality reduction of design space while maintaining the generality of original design space. Besides, an acceleration approach for samples calculation in surrogate modeling is applied to reduce the computational time while providing sufficient accuracy. The optimizations of a transonic airfoil RAE2822 and the transonic wing ONERA M6 are performed to demonstrate the effectiveness of the proposed new optimization system. In both cases, we manage to reduce the number of design variables from 20 to 10 and from 42 to 20 respectively. The new design optimization system converges faster and it takes 1/3 of the total time of traditional optimization to converge to a better design, thus significantly reducing the overall optimization time and improving the efficiency of conventional global design optimization method.
基金funded by the Aeronautical Science Foundation of China–China(No.2010ZB51023)
文摘Abstract A first study on the continuous adjoint formulation for aerodynamic optimization design of high pressure turbines based on S2 surface governed by the Euler equations with source terms is presented. The objective function is defined as an integral function along the boundaries, and the adjoint equations and the boundary conditions are derived by introducing the adjoint variable vec- tors. The gradient expression of the objective function then includes only the terms related to phys- ical shape variations. The numerical solution of the adjoint equation is conducted by a finite- difference method with the Jameson spatial scheme employing the first and the third order dissipa- tive fluxes. A gradient-based aerodynamic optimization system is established by integrating the blade stagger angles, the stacking lines and the passage perturbation parameterization with the quasi-Newton method of Broyden Fletcher Goldfarb-Shanno (BFGS). The application of the continuous adjoint method is validated through a single stage high pressure turbine optimization case. The adiabatic efficiency increases from 0.8875 to 0.8931, whilst the mass flow rate and the pressure ratio remain almost unchanged. The optimization design is shown to reduce the passage vortex loss as well as the mixing loss due to the cooling air injection.
文摘In the present paper,the design of a transonic centrifugal compressor stage with the inlet relative Mach number about 1.3 and detailed flow field investigation by three-dimensional CFD are described.Firstly the CFD program was validated by an experimental case.Then the preliminary aerodynamic design of stage completed through in-house one-dimensional code.Three types of impellers and two sets of stages were computed and analyzed.It can be found that the swept shape of leading edge has prominent influence on the performance and can enlarge the flow range.Similarly,the performance of the stage with swept impeller is better than others.The total pressure ratio and adiabatic efficiency of final geometry achieve 7:1 and 80% respectively.The vane diffuser with same airfoils along span increases attack angle at higher span,and the local flow structure and performance is deteriorated.
文摘This paper describes the study on aerodynamics design optimization of turbomachinery blading developed by the authors at the Institute of Engineering Thermophysics, Chinese Academy of Sciences, during the recent few years. The present paper describes the aspects mainly on how to use a rapid approach of profiling a 3D blading and of grid generation for computation, a fast and accurate viscous computation method and an appropriate optimization methodology_ including a blade parameterization algorithm to optimize tm-bomachinery blading aerodynamically. Any blade configuration can be expressed by three curves, they are the camber lines, the thickness distributions and the radial stacking line, and then the blade geometry can be easily parameterized by a number of parameters with three polynomials. A gradient-based parameterization analytical method and a response surface method were applied herein for blade optimization. It was found that the optimization process provides reliable design for turbomachinery with reasonable computing time.
文摘The design of an annular combustion chamber in a gas turbine engine is thebackbone of this paper.It is specifically designed for a low bypass turbofan engine in a jettrainer aircraft.The combustion chamber is positioned in between the compressor and turbine.lt has to be designed based on the constant pressure,enthalpy addition process.The presentmethodology deals with the computation of the initial design parameters from benchmarking ofreal-time industry standards and arriving at optimized values.It is then studied for feasibilityand finalized.Then the various dimensions of the combustor are calculated based on differentempirical formulas.The air mass flow is then distributed across the zones of the combustor.The cooling requirement is met using the cooling holes.Finally the variations of parameters atdifferent points are calculated.The whole combustion chamber is modeled using Siemens NX8.0,a modeling software and presented.The model is then analyzed using various parametersat various stages and levels to determine the optimized design.The aerodynamic flowcharacteristics is simulated numerically by means of ANSYS 14.5 software suite.The air-fuelmixture,combustion-turbulence,thermal and cooling analysis is carried out.The analysis isperformed at various scenarios and compared.The results are then presented in image outputsand graphs.