Wind loading study on a cable-net supported glass wall is conducted by means of wind tunnel tests. An equiva- lent aeroelastic model is designed and constructed. Response of displacements of the wall is measured and a...Wind loading study on a cable-net supported glass wall is conducted by means of wind tunnel tests. An equiva- lent aeroelastic model is designed and constructed. Response of displacements of the wall is measured and analyzed. In order to design a glass wall under wind loading, the "wind- vibration factor" is estimated and discussed. In fact, the mech- anism of wind acting on the wall is commonly known not only as positive pressure, but also as negative pressure caused by the flow separation on the corners of the building. Due to the diffidence in the mechanism of wind acting, two typi- cal response cases are classified. The results show that the dynamic response of the structure caused by the negative pressure is stronger than that of the positive pressure case. To determine the aerodynamic wind loading on a flexible part of structure on a building, wind tunnel study may be useful and play an important role.展开更多
The parameter sensitivities affecting the flutter speed of the NREL (National Renewable Energy Laboratory) 5-MW baseline HAWT (horizontal axis wind turbine) blades are analyzed. An aeroelastic model, which compris...The parameter sensitivities affecting the flutter speed of the NREL (National Renewable Energy Laboratory) 5-MW baseline HAWT (horizontal axis wind turbine) blades are analyzed. An aeroelastic model, which comprises an aerodynamic part to calculate the aerodynamic loads and a structural part to determine the structural dynamic responses, is established to describe the classical flutter of the blades. For the aerodynamic part, Theodorsen unsteady aerodynamics model is used. For the structural part, Lagrange’s equation is employed. The flutter speed is determined by introducing “V–g” method to the aeroelastic model, which converts the issue of classical flutter speed determination into an eigenvalue problem. Furthermore, the time domain aeroelastic response of the wind turbine blade section is obtained with employing Runge-Kutta method. The results show that four cases (i.e., reducing the blade torsional stiffness, moving the center of gravity or the elastic axis towards the trailing edge of the section, and placing the turbine in high air density area) will decrease the flutter speed. Therefore, the judicious selection of the four parameters (the torsional stiffness, the chordwise position of the center of gravity, the elastic axis position and air density) can increase the relative inflow speed at the blade section associated with the onset of flutter.展开更多
Aiming to improve the pull-up control performance in the process of releasing balloonborne solar powered UAVs(Unmanned Aerial Vehicles),this paper establishes the full flight mechanics equations with flexible modes,an...Aiming to improve the pull-up control performance in the process of releasing balloonborne solar powered UAVs(Unmanned Aerial Vehicles),this paper establishes the full flight mechanics equations with flexible modes,and proposes the control method suitable for engineering application.To be specific,the authors first calculate the real aerodynamic force on horizontal stabilizer by comparing the fuselage deformation in ballooning test with that in static loading test.Furthermore,considering fuselage elastic deformation,the pitching moment coefficient is obtained and the influence of airspeed and elevator angle on pitching moment coefficient and control surface efficiency are analysed.Second,the authors establish a complete flight mechanics model,including elastic structural dynamic model and rigid flight dynamic model,by comprehensively considering the aerodynamic data,the relationship between fuselage deformation and load,as well as the ballooning test.Third,the authors perform the numerical simulation and comparison study on control performance between rigid model and flexible model.Moreover,the authors implement model modification based on the low altitude flight test and steady-state point analysing.Finally,a scaled UAV is used to complete the balloon-borne launching test.The results show that the longitudinal control method can analyse the longitudinal aerodynamics and control characteristics accurately,and could be effectively utilized in the pull-up control of the balloon-borne solar powered UAV.展开更多
Tail buffeting at high angle of attack causes distinct fatigue problem on tail structure of twin tail fighters.In this study,a piezoelectric active control experiment of tail buffeting was performed in a wind tunnel u...Tail buffeting at high angle of attack causes distinct fatigue problem on tail structure of twin tail fighters.In this study,a piezoelectric active control experiment of tail buffeting was performed in a wind tunnel using arching PZT actuator(APA) and principal modal control(PMC) method.Test results showed the peak value of power spectral density(PSD) function of tail buffeting acceleration response could be suppressed by about 42% when the angle of attack reached 35°,indicating the validity and feasibility of PMC method and APA for tail buffeting alleviation at high angle of attack.展开更多
文摘Wind loading study on a cable-net supported glass wall is conducted by means of wind tunnel tests. An equiva- lent aeroelastic model is designed and constructed. Response of displacements of the wall is measured and analyzed. In order to design a glass wall under wind loading, the "wind- vibration factor" is estimated and discussed. In fact, the mech- anism of wind acting on the wall is commonly known not only as positive pressure, but also as negative pressure caused by the flow separation on the corners of the building. Due to the diffidence in the mechanism of wind acting, two typi- cal response cases are classified. The results show that the dynamic response of the structure caused by the negative pressure is stronger than that of the positive pressure case. To determine the aerodynamic wind loading on a flexible part of structure on a building, wind tunnel study may be useful and play an important role.
基金Project(2015B37714)supported by the Fundamental Research Funds for the Central Universities of ChinaProject(51605005)supported by the National Natural Science Foundation of China+1 种基金Project(ZK16-03-03)supported by the Open Foundation of Jiangsu Wind Technology Center,ChinaProject([2013]56)supported by the First Group of 2011 Plan of Jiangsu Province,China
文摘The parameter sensitivities affecting the flutter speed of the NREL (National Renewable Energy Laboratory) 5-MW baseline HAWT (horizontal axis wind turbine) blades are analyzed. An aeroelastic model, which comprises an aerodynamic part to calculate the aerodynamic loads and a structural part to determine the structural dynamic responses, is established to describe the classical flutter of the blades. For the aerodynamic part, Theodorsen unsteady aerodynamics model is used. For the structural part, Lagrange’s equation is employed. The flutter speed is determined by introducing “V–g” method to the aeroelastic model, which converts the issue of classical flutter speed determination into an eigenvalue problem. Furthermore, the time domain aeroelastic response of the wind turbine blade section is obtained with employing Runge-Kutta method. The results show that four cases (i.e., reducing the blade torsional stiffness, moving the center of gravity or the elastic axis towards the trailing edge of the section, and placing the turbine in high air density area) will decrease the flutter speed. Therefore, the judicious selection of the four parameters (the torsional stiffness, the chordwise position of the center of gravity, the elastic axis position and air density) can increase the relative inflow speed at the blade section associated with the onset of flutter.
基金supported by the Beijing Natural Science Foundation under Grant No.4222050the National Natural Science Foundation of China under Grant No.62173030。
文摘Aiming to improve the pull-up control performance in the process of releasing balloonborne solar powered UAVs(Unmanned Aerial Vehicles),this paper establishes the full flight mechanics equations with flexible modes,and proposes the control method suitable for engineering application.To be specific,the authors first calculate the real aerodynamic force on horizontal stabilizer by comparing the fuselage deformation in ballooning test with that in static loading test.Furthermore,considering fuselage elastic deformation,the pitching moment coefficient is obtained and the influence of airspeed and elevator angle on pitching moment coefficient and control surface efficiency are analysed.Second,the authors establish a complete flight mechanics model,including elastic structural dynamic model and rigid flight dynamic model,by comprehensively considering the aerodynamic data,the relationship between fuselage deformation and load,as well as the ballooning test.Third,the authors perform the numerical simulation and comparison study on control performance between rigid model and flexible model.Moreover,the authors implement model modification based on the low altitude flight test and steady-state point analysing.Finally,a scaled UAV is used to complete the balloon-borne launching test.The results show that the longitudinal control method can analyse the longitudinal aerodynamics and control characteristics accurately,and could be effectively utilized in the pull-up control of the balloon-borne solar powered UAV.
基金supported by the National Natural Science Foundation of China (Grant No. 11072198)the Basic Research Program of Northwestern Polytechnical University (Grant No. JC201102) "111" Project(Grant No. B07050)
文摘Tail buffeting at high angle of attack causes distinct fatigue problem on tail structure of twin tail fighters.In this study,a piezoelectric active control experiment of tail buffeting was performed in a wind tunnel using arching PZT actuator(APA) and principal modal control(PMC) method.Test results showed the peak value of power spectral density(PSD) function of tail buffeting acceleration response could be suppressed by about 42% when the angle of attack reached 35°,indicating the validity and feasibility of PMC method and APA for tail buffeting alleviation at high angle of attack.