期刊文献+
共找到83篇文章
< 1 2 5 >
每页显示 20 50 100
Control-Oriented Modeling and Simulation on Rigid-Aeroelasticity Coupling for Hypersonic Vehicle
1
作者 肖莉萍 张勇 陆宇平 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2015年第1期70-80,共11页
Since the subsystems of aerodynamics,propulsion,structure and so on in hypersonic vehicles involve characteristics of nonlinearity,strong coupling and uncertainty,and typical hypersonic vehicles adopt slender-body and... Since the subsystems of aerodynamics,propulsion,structure and so on in hypersonic vehicles involve characteristics of nonlinearity,strong coupling and uncertainty,and typical hypersonic vehicles adopt slender-body and wave-rider layout with widely-used lightweight materials,the accuracy of the modeling with a conventional rigid-body assumption is challenged.Therefore,a nonlinear mathematical longitudinal model of a hypersonic vehicle is established with its geometry provided to estimate aerodynamic force and thrust using hypersonic aerodynamics and quasi-one-dimensional flow with heat added and capture vehicle aeroelasticity using a single free-free Bernoulli-Euler beam model.Then the static and dynamic properties of the rigid and rigid-aeroelasticity coupling model are compared via theoretical analysis and numerical simulation under the given flight condition.Finally,a LQR controller for rigid model is designed and the comparable results are obtained to explain the aerolasticity influence on the control effect.The simulation results show that the aeroelasticity mode of slender-body hypersonic vehicles affects short period mode significantly and it cannot be simply neglected. 展开更多
关键词 hypersonic vehicle wave-rider aeroelasticity MODELING dynamic properties
下载PDF
Recent Progress on Aeroelasticity of High-Performance Morphing UAVs
2
作者 Binbin Lv Jun Zha +3 位作者 Kaichun Zeng Hongtao Guo Li Yu Peng Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第10期1-29,共29页
The high-performance morphing aircraft has become a research focus all over the world.The morphing aircraft,unlike regular unmanned aerial vehicles(UAVs),has more complicated aerodynamic characteristics,making itmore ... The high-performance morphing aircraft has become a research focus all over the world.The morphing aircraft,unlike regular unmanned aerial vehicles(UAVs),has more complicated aerodynamic characteristics,making itmore difficultto conduct its design,model analysis,and experimentation.This paper reviews the recent process and the current status of aeroelastic issues,numerical simulations,and wind tunnel test of morphing aircrafts.The evaluation of aerodynamic characteristics,mechanism,and relevant unsteady dynamic aerodynamicmodeling throughout the morphing process are the primary technological bottlenecks formorphing aircrafts.The unstable aerodynamic forces have a significant impact on the aircraft handling characteristics,control law design,and flight safety.In the past,the structural analysis of morphing aircrafts,flight dynamics modeling,computational mesh morphing technology,and aerodynamic calculation were performed in promoting the development of next generation UAVs,with nonlinear dynamic challenges includingtransonic aeroelastic problems and high angle of attack aeroelastic problems.At present,many facets of these difficulties,together with the accompanying numerical simulation studies,remain under-explored.In addition,wind tunnel experiments face significant challenges in the dynamic morphing process.Finally,dynamic unsteady aerodynamic characteristics in the continuous morphing process still need to be verified by more related experiments. 展开更多
关键词 Morphing aircraft aeroelasticity numerical simulation wind tunnel test
下载PDF
Review of Proper Orthogonal Decomposition Method Applied to Computational Aeroelasticity
3
作者 HASAN Junaid Hasham 《Computer Aided Drafting,Design and Manufacturing》 2010年第1期65-77,共13页
Over the recent years there has been an increased trend in the use of Reduced Order Models (ROM) for modeling the coupled aeroelastic system. Of all the ROM models, the Proper Orthogonal Decomposition Method (POD)... Over the recent years there has been an increased trend in the use of Reduced Order Models (ROM) for modeling the coupled aeroelastic system. Of all the ROM models, the Proper Orthogonal Decomposition Method (POD) has been the most widely used, reason being the relative simplicity of implementation and the physical insight that it offers towards the physical problem. In this paper we begin by briefly recalling the recent work using POD for the computational aeroelasticity followed by the mathematical formulation. Mathematical formulation is important as it provides understanding of how POD method works. Implementation issues related to the POD method are presented next. Since POD is an empirical technique therefore, it is marred by the robustness issues as is the case with all the ROMs. In the end the variations of POD method, developed over the years are presented along with the most recent trend of using hybrid ROM. 展开更多
关键词 aeroelasticity transonic aerodynamics reduced order modeling proper orthogonal decomposition
下载PDF
Static aeroelasticity of the propulsion system of ion propulsion unmanned aerial vehicles
4
作者 Shuai Hao Tielin Ma +3 位作者 She Chen Hongzhong Ma Jinwu Xiang Fangxiang Ouyang 《Propulsion and Power Research》 SCIE 2023年第3期336-355,共20页
“Ionic wind”generators are used as the main propulsion system in ion propulsion unmanned aerial vehicles(UAVs).Owing to the large size and poor stiffness of the electrode array in the propulsion system,the electrode... “Ionic wind”generators are used as the main propulsion system in ion propulsion unmanned aerial vehicles(UAVs).Owing to the large size and poor stiffness of the electrode array in the propulsion system,the electrode array is prone to deformation under the flight load.In this work,the thrust characteristics and static aeroelastic properties of“ionic wind”propulsion systems were analyzed in detail.The simulation model for an“ionic wind”propulsion system was established by coupling a two-dimensional gas discharge model with a gas dynamics model.The influences of electrode voltage,spacing,size,and shape on the performance of the propulsion system were investigated.The fluid-solid interaction method was used to solve static aeroelastic characteristics under deformation.The aerodynamic and thrust performances of the elastic state and the rigid state were compared.It was found that the operating voltage,the distance between two electrodes,and the emitter radius had greater impacts on the thrust of the propulsion system.The propulsion system had a small contribution to the lift but a large contribution to the drag.In the elastic state,the lift coefficient accounted for 12.2%,and the drag coefficient accounted for 25.8%.Under the action of the downwash airflow from the wing,the propulsion system formed an upward moment around the center of mass,which contributed greatly to the pitching moment derivative of the whole aircraft.In the elastic state,the pitching moment derivative accounted for 29.7%.After elastic deformation,the thrust action point moved upward by 28.7 mm.Hence,the no lift pitching moment is reduced by 0.104 N$m,and the pitching moment coefficient is reduced by 0.014,causing a great impact on the longitudinal trimming of the whole aircraft. 展开更多
关键词 Ion propulsion unmanned aerial vehicle(UAV) Propulsion system Electro-aerodynamics Static aeroelasticity Fluid-solid interaction
原文传递
Time-Domain Analysis of Body Freedom Flutter Based on 6DOF Equation
5
作者 Zhehan Ji Tongqing Guo +2 位作者 Di Zhou Zhiliang Lu Binbin Lyu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第1期489-508,共20页
The reduced weight and improved efficiency of modern aeronautical structures result in a decreasing separation of frequency ranges of rigid and elastic modes.Particularly,a high-aspect-ratio flexible flying wing is pr... The reduced weight and improved efficiency of modern aeronautical structures result in a decreasing separation of frequency ranges of rigid and elastic modes.Particularly,a high-aspect-ratio flexible flying wing is prone to body freedomflutter(BFF),which is a result of coupling of the rigid body short-periodmodewith 1st wing bendingmode.Accurate prediction of the BFF characteristics is helpful to reflect the attitude changes of the vehicle intuitively and design the active flutter suppression control law.Instead of using the rigid body mode,this work simulates the rigid bodymotion of the model by using the six-degree-of-freedom(6DOF)equation.A dynamicmesh generation strategy particularly suitable for BFF simulation of free flying aircraft is developed.An accurate Computational Fluid Dynamics/Computational Structural Dynamics/six-degree-of-freedom equation(CFD/CSD/6DOF)-based BFF prediction method is proposed.Firstly,the time-domain CFD/CSD method is used to calculate the static equilibrium state of the model.Based on this state,the CFD/CSD/6DOF equation is solved in time domain to evaluate the structural response of themodel.Then combinedwith the variable stiffnessmethod,the critical flutter point of the model is obtained.This method is applied to the BFF calculation of a flyingwing model.The calculation results of the BFF characteristics of the model agree well with those fromthe modalmethod andNastran software.Finally,the method is used to analyze the influence factors of BFF.The analysis results show that the flutter speed can be improved by either releasing plunge constraint or moving the center ofmass forward or increasing the pitch inertia. 展开更多
关键词 Body freedom flutter time-domain CFD/CSD/6DOF method dynamic mesh generation strategy aeroelasticity
下载PDF
CONCERNING A BASIC ASSUMPTION FOR AEROELASTICITY IN TURBOMACHINERY
6
作者 杨晓东 陶德平 周盛 《Science China Mathematics》 SCIE 1991年第6期746-754,共9页
One of the basic assumptions for aeroelasticity in turbomachinery that the interbladephase angle along a blade row is constant has been proved to be invalid by the fact that nei-ther dynamic stresses nor interblade ph... One of the basic assumptions for aeroelasticity in turbomachinery that the interbladephase angle along a blade row is constant has been proved to be invalid by the fact that nei-ther dynamic stresses nor interblade phase angles are constant along a blade row when thestall flutter occurs. With this assumption abandoned, a new model and the correspondingnumerical method have been developed. Comparisons between calculations and measurementsshowed that the main cause which makes blade dynamic stresses unequal along a blade rowin the unstable aeroelastic process is inequable interblade phase angle distribution along theblade row. 展开更多
关键词 aeroelasticity in TURBOMACHINERY UNSTEADY flow STALL flutter.
原文传递
Wing aeroelasticity analysis based on an integral boundary-layer method coupled with Euler solver
7
作者 Ma Yanfeng He Erming +1 位作者 Zeng Xianang Li Junjie 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2016年第5期1262-1272,共11页
An interactive boundary-layer method, which solves the unsteady flow, is developed for aeroelastic computation in the time domain. The coupled method combines the Euler solver with the integral boundary-layer solver ... An interactive boundary-layer method, which solves the unsteady flow, is developed for aeroelastic computation in the time domain. The coupled method combines the Euler solver with the integral boundary-layer solver (Euler/BL) in a "semi-inverse" manner to compute flows with the inviscid and viscous interaction. Unsteady boundary conditions on moving surfaces are taken into account by utilizing the approximate small-perturbation method without moving the computational grids. The steady and unsteady flow calculations for the LANN wing are presented. The wing tip displacement of high Reynolds number aero-structural dynamics (HIRENASD) Project is simulated under different angles of attack. The flutter-boundary predictions for the AGARD 445.6 wing are provided. The results of the interactive boundary-layer method are compared with those of the Euler method and experimental data. The study shows that viscous effects are significant for these cases and the further data analysis confirms the validity and practicability of the coupled method. 展开更多
关键词 aeroelasticity FLUTTER Integral boundary-layer Transonic flow Unsteady flow
原文传递
Pressure-induced instability and its coupled aeroelasticity of inflated pillow
8
作者 Ji ZHANG Changguo WANG +1 位作者 Jiaming GUO Jiawei ZHANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第2期1-7,共7页
A floating air weapon system(such as airborne floating mines)plays an important role in modern air defense operations.This paper focuses on aeroelastic characteristics of airborne floating mine named inflated pillow.F... A floating air weapon system(such as airborne floating mines)plays an important role in modern air defense operations.This paper focuses on aeroelastic characteristics of airborne floating mine named inflated pillow.Firstly,the dynamic deployable process of the pillow and characteristics of the local instability of the edge are studied,and the evolution mechanism of wrinkles and kinks is analyzed.Secondly,in the cruising stage,the fluid-structural-thermal coupling analysis is performed on the pillow,and the aeroelastic characteristics are studied.Thirdly,the shapepreserving effect of the inflated pillow during the“negative pressure”slow landing stage is evaluated.It is found that when the wind velocity is higher,the pillow has a collapsed instability(surface extrusion and contact),and when the wind velocity is lower,snap-through instability occurs.Finally,for the collapsed instability,a carbon fiber skeleton is added to discrete the large global collapsed fold into small local folds,thus achieving shape-preserving effect of pillow.For snapthrough instability,the critical internal pressure and different shape evolution under different wind velocity are evaluated.Through the analysis of the mechanical mechanism and control of the structural morphological evolution,it provides theoretical guidance for the application of the curved shell structure in floating air weapon system. 展开更多
关键词 Aeroelastic analysis Fluid-structural-thermal coupling analysis Inflated pillow KINK Pressure-induced instability WRINKLE
原文传递
Geometrically Nonlinear Flutter Analysis Based on CFD/CSD Methods and Wind Tunnel Experimental Verification
9
作者 Changrong Zhang Hongtao Guo +2 位作者 Li Yu Binbin Lv Hongya Xia 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第8期1743-1758,共16页
This study presents a high-speed geometrically nonlinear flutter analysis calculation method based on the highprecision computational fluid dynamics/computational structural dynamics methods.In the proposed method,the... This study presents a high-speed geometrically nonlinear flutter analysis calculation method based on the highprecision computational fluid dynamics/computational structural dynamics methods.In the proposed method,the aerodynamic simulation was conducted based on computational fluid dynamics,and the structural model was established using the nonlinear finite element model and tangential stiffness matrix.First,the equilibrium position was obtained using the nonlinear static aeroelastic iteration.Second,the structural modal under a steady aerodynamic load was extracted.Finally,the generalized displacement time curve was obtained by coupling the unsteady aerodynamics and linearized structure motion equations.Moreover,if the flutter is not at a critical state,the incoming flow dynamic pressure needs to be changed,and the above steps must be repeated until the vibration amplitude are equal.Furthermore,the high-speed geometrically nonlinear flutter of the wing-body assemblymodel with a high-aspect ratio was investigated,and the correctness of the method was verified using high-speed wind tunnel experiments.The results showed that the geometric nonlinearity of the large deformation of the wing caused in-plane bending to become a key factor in flutter characteristics and significantly decreased the dynamic pressure and frequency of the nonlinear flutter compared to those of the linear flutter. 展开更多
关键词 Fluid-structure coupling aeroelasticity FLUTTER geometric nonlinearity numerical simulation
下载PDF
Performance enhancement of wing-based piezoaeroelastic energy harvesting through freeplay nonlinearity 被引量:3
10
作者 Abdessattar Abdelkefi Muhammad R. Hajj 《Theoretical & Applied Mechanics Letters》 CAS 2013年第4期14-17,共4页
We investigate experimentally how controlled freeplay nonlinearity affects harvesting energy from a wing-based piezoaeroelastic energy harvesting system. This system consisits of a rigid airfoil which is supported by ... We investigate experimentally how controlled freeplay nonlinearity affects harvesting energy from a wing-based piezoaeroelastic energy harvesting system. This system consisits of a rigid airfoil which is supported by a nonlinear torsional spring (freeplay) in the pitch degree of freedom and a linear fiexural spring in the plunge degree of freedom. By attaching a piezoelectric material (PSI-5A4E) to the plunge degree of freedom, we can convert aeroelastic vibrations to electrical energy. The focus of this study is placed on the effects of the freeplay nonlinearity gap on the behavior of the harvester in terms of cut-in speed and level of harvested power. Although the freeplay nonlinearity may result in subcritical Hopf bifurcations (catastrophic for real aircrafts), harvesting energy at low wind speeds is beneficial for designing piezoaeroelastic systems. It is demonstrated that increasing the freeplay nonlinearity gap can decrease the cut-in speed through a subcritical instability and gives the possibility to harvest energy at low wind speeds. The results also demonstrate that an optimum value of the load resistance exists, at which the level of the harvested power is maximized. 展开更多
关键词 energy harvesting freeplay nonlinearity piezoelectric material aeroelasticity experimental measurements
下载PDF
APPLICATION OF HYBRID GENETIC ALGORITHM IN AEROELASTIC MULTIDISCIPLINARY DESIGN OPTIMIZATION OF LARGE AIRCRAFT 被引量:2
11
作者 唐长红 万志强 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2013年第2期109-117,共9页
The genetic/gradient-based hybrid algorithm is introduced and used in the design studies of aeroelastic optimization of large aircraft wings to attain skin distribution,stiffness distribution and design sensitivity.Th... The genetic/gradient-based hybrid algorithm is introduced and used in the design studies of aeroelastic optimization of large aircraft wings to attain skin distribution,stiffness distribution and design sensitivity.The program of genetic algorithm is developed by the authors while the gradient-based algorithm borrows from the modified method for feasible direction in MSC/NASTRAN software.In the hybrid algorithm,the genetic algorithm is used to perform global search to avoid to fall into local optima,and then the excellent individuals of every generation optimized by the genetic algorithm are further fine-tuned by the modified method for feasible direction to attain the local optima and hence to get global optima.Moreover,the application effects of hybrid genetic algorithm in aeroelastic multidisciplinary design optimization of large aircraft wing are discussed,which satisfy multiple constraints of strength,displacement,aileron efficiency,and flutter speed.The application results show that the genetic/gradient-based hybrid algorithm is available for aeroelastic optimization of large aircraft wings in initial design phase as well as detailed design phase,and the optimization results are very consistent.Therefore,the design modifications can be decreased using the genetic/gradient-based hybrid algorithm. 展开更多
关键词 aeroelasticity multidisciplinary design optimization genetic/gradient-based hybrid algorithm large aircraft
下载PDF
S型进气道对风扇叶片振动的影响(英文) 被引量:1
12
作者 郑赟 王宁 《风机技术》 2019年第1期46-53,I0009,共9页
S型进气道广泛应用于现代航空发动机。其气流转角及进气道引起的流动畸变现象能导致叶片振动问题发生,如叶片颤振和强迫响应。本文考虑了S型进气道的影响,分析风扇叶片的振动特性。采用S型进气道与Rotor67风扇叶片相结合的模型,使用课... S型进气道广泛应用于现代航空发动机。其气流转角及进气道引起的流动畸变现象能导致叶片振动问题发生,如叶片颤振和强迫响应。本文考虑了S型进气道的影响,分析风扇叶片的振动特性。采用S型进气道与Rotor67风扇叶片相结合的模型,使用课题组内基于流固耦合算法的气动弹性分析程序,对风扇叶片进行气动弹性分析。在流体域内,使用基于有限体积法的三维非结构化网格的可压缩流体求解器,结构动力学求解器采用模态叠加方法求解叶片振动。进气道与风扇交界面处采用掺混面和滑移面两种处理方法,分别代表不考虑进气道的影响和考虑进气道及流动畸变的影响。计算对比了两种情况下的气动阻尼值,并分析了风扇叶片对进气道的瞬态响应。本文证明了S型进气道能够增加叶片强迫响应及引发叶片颤振,对风扇叶片的振动造成严重的影响。 展开更多
关键词 Fan/Intake INTERACTION FLUTTER aeroelasticity BLADE Vibration Fluid-structured INTERACTION Aerodynamic DAMPING
下载PDF
Electroaeroelastic Modeling and Analysis for Flow Energy Piezoelectric Harvester
13
作者 Zhang Jiantao Wu Song +1 位作者 Shu Chang Li Chaodong 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2017年第1期9-14,共6页
An electroaeroelastic model for wind energy harvesting using piezoelectric generators is presented.The flow field is mapped in detail.The force which the fluid flow exerts on the generator is formulated.The output vol... An electroaeroelastic model for wind energy harvesting using piezoelectric generators is presented.The flow field is mapped in detail.The force which the fluid flow exerts on the generator is formulated.The output voltage levels generated from the mechanical strain within the piezoelectric elements are determined.An analytical model is developed with consideration of the interactions between the fluid,solid and electric.Various analytical results are obtained,such as flow velocity contour and pressure contour for the flow,moving trajectories,stress contour and output voltage of the harvester.A prototype is fabricated and tested.The simulation result is close to the experimental result.The model developed in this paper can predict the performance and behavior of different energy harvesters.And it also can be used as a design tool for optimizing the performance of the harvester. 展开更多
关键词 WIND ENERGY HARVESTER PIEZOELECTRIC aeroelasticity ELECTROMECHANICS
下载PDF
TRANSIENT RESPONSE INVESTIGATION OF GIMBALLED TILTROTORS DURING ENGAGE AND DISENGAGE OPERATIONS
14
作者 康浩 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 1999年第3期28-33,共6页
An analysis has been developed to predict the transient aeroelastic response of gimballed tiltrotors during shipboard engage/disengage operations. A multi blade gimballed rotor is modeled with slender elastic beams ... An analysis has been developed to predict the transient aeroelastic response of gimballed tiltrotors during shipboard engage/disengage operations. A multi blade gimballed rotor is modeled with slender elastic beams rigidly attached to a hub and undergoing flap bending, lag bending, elastic twist, and axial deflection. The gimbal restraint is simulated using a conditional rotational spring. Blade element theory is used to calculate quasi steady loads in linear and nonlinear regimes. The rotor equations of motion are formulated using Hamiltons principle and spatially discretized using the finite element method. The discretized rotor equations of motion are integrated in the modal space for a specified rotor speed run up profile. Studies for a 1/5 size aeroelastically scaled tiltrotor model are conducted to validate the analysis and investigate the transient response and loads of the gimballed rotor during engagement. Blade bending moment and hub moment predictions indicated that gimbal restraint impacts can induce high transient loads on the rotor blades and hub. 展开更多
关键词 TILTROTOR transient response aeroelasticity engage operation
下载PDF
Nonlinear aeroelastic coupled trim and stability analysis of rotor-fuselage
15
作者 胡新宇 韩景龙 喻梅 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2010年第2期237-246,共10页
Based on the Hamilton principle and the moderate deflection beam theory, discretizing the helicopter blade into a number of beam elements with 15 degrees of freedora, and using a quasi-steady aero-model, a nonlinear c... Based on the Hamilton principle and the moderate deflection beam theory, discretizing the helicopter blade into a number of beam elements with 15 degrees of freedora, and using a quasi-steady aero-model, a nonlinear coupled rotor/fuselage equation is established. A periodic solution of blades and fuselage is obtained through aeroelastic coupled trim using the temporal finite element method (TEM). The Peters dynamic inflow model is used for vehicle stability. A program for computation is developed, which produces the blade responses, hub loads, and rotor pitch controls. The correlation between the analytical results and related literature is good. The converged solution simultaneously satisfies the blade and the vehicle equilibrium equations. 展开更多
关键词 NONLINEAR aeroelasticity rotor/fuselage coupling temporal finite elementmethod (TEM) stability
下载PDF
Effects of Thermo-Mechanical Loads on Aeroelastic Instabilities of Metallic and Composite Panels
16
作者 Erasmo Carrera Maria Cinefra +1 位作者 Enrico Zappino Lorenzo Succi 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2014年第2期118-122,共5页
Panel flutter phenomena can be strongly affected by thermal loads,and so a refined aeroelastic model is presented.Higher-order shell theories are used as structural models.The aerodynamic forces are described using th... Panel flutter phenomena can be strongly affected by thermal loads,and so a refined aeroelastic model is presented.Higher-order shell theories are used as structural models.The aerodynamic forces are described using the Piston theory.The temperature is considered uniform over the thickness of the panel.The aero-thermo-elastic model is derived in the framework of the Carrera unified formulation(CUF),therefore the matrices are expressed in a compact form using the″fundamental nuclei″.Composite and sandwich structures are considered and different boundary conditions are taken into account.The effects of the thermal load on the aeroelastic behavior are investigated. 展开更多
关键词 Carrera unified formulation(CUF) panel flutter aeroelasticity aero-thermo-elasticity shell elements
下载PDF
Numerical Simulation Research on Static Aeroelastic Effect of the Transonic Aileron of a High Aspect Ratio Aircraf
17
作者 Hongtao Guo Changrong Zhang +1 位作者 Binbin Lv Li Yu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第9期991-1010,共20页
The static aeroelastic effect of aircraft ailerons with high aspect ratio at transonic velocity is investigated in this paper by the CFD/CSD fluid-structure coupling numerical simulation.The influences of wing static ... The static aeroelastic effect of aircraft ailerons with high aspect ratio at transonic velocity is investigated in this paper by the CFD/CSD fluid-structure coupling numerical simulation.The influences of wing static aeroelasticity and the‘scissor opening’gap width between aileron control surface and the main wing surface on aileron efficiency are mainly explored.The main purpose of this paper is to provide technical support for the wind tunnel experimental model of aileron static aeroelasticity.The results indicate that the flight dynamic pressure has a great influence on the static aeroelastic effect of ailerons,and the greater the dynamic pressure,the lower the aileron efficiency.Aileron deflection causes asymmetric elastic deformation of the main wing surfaces of the left and right wings.The torque difference caused by the load distribution on the main wing surface offsets the rolling torque generated by the aileron.This results in a significant reduction in aileron efficiency,and it is noticeable that it is not the elastic deformation of the aileron itself or the reduction in effective deflection that leads to the reduction in rolling control efficiency.Under typical transonic conditions,the rolling control torque of the aileron can be reduced by more than 25%,in the range of 2.5–10 mm,and the‘scissor opening’gap width of the aileron has almost no influence on its static aeroelastic effect. 展开更多
关键词 Static aeroelasticity numerical simulation aerodynamic characteristics aileron efficiency
下载PDF
民用飞机风扇的计算气动弹性综述(英文)
18
作者 M.Vahdati K.B Lee S.Stapelfeldt 《风机技术》 2018年第5期42-52,共11页
The aim of this paper is to present the state-of-the art in computational aeroelasticity methods that are available for analyzing fan blades on modern civil aircraft. Fan blades in modern high-bypass aero-engines typi... The aim of this paper is to present the state-of-the art in computational aeroelasticity methods that are available for analyzing fan blades on modern civil aircraft. Fan blades in modern high-bypass aero-engines typically produce around 80% of the thrust. In order to improve specific fuel consumption and reduce the level of noise emitted from the engine, civil turbofan engine designs are moving toward even larger fan diameters with lower tip speeds and hence the importance of this component of aero-engine becomes even more prominent. To reduce weight, future fan blades will be made of composite materials and shorter intakes are used. The new designs are highly loaded and will be more susceptible to aerodynamic and aeroelastic instabilities, and hence computationally efficient aeroelastic modelling tools for such blades are paramount. 展开更多
关键词 UnsteadyAerodynamics aeroelasticity FLUTTER BIRD STRIKE INLET DISTORTION FORCED Response
下载PDF
Interesting Beat Phenomenon for Airfoil
19
作者 JING Zhiwei 《International Journal of Plant Engineering and Management》 2022年第1期18-28,共11页
The airfoil with two degrees is simulated to get the beat phenomenon.The results indicate that the occurrence of beat phenomenon is very sensitive to the equivalent frequency and damping,contributed by the structural ... The airfoil with two degrees is simulated to get the beat phenomenon.The results indicate that the occurrence of beat phenomenon is very sensitive to the equivalent frequency and damping,contributed by the structural and aerodynamic ones.Only the equivalent damping approaches to zero and the equivalent frequency is very close to the gust frequency which the beat phenomenon occurs. 展开更多
关键词 beat phenomenon aeroelasticity GUST FLUTTER AIRFOIL
下载PDF
Stiffness Distribution and Aeroelastic Performance Optimization of High-Aspect-Ratio Wings 被引量:1
20
作者 Wan Zhiqiang Du Ziliang +1 位作者 Wu Qiang Yang Chao 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2016年第3期243-251,共9页
The relationship between stiffness distribution and aeroelastic performance for a beam-frame model and a3-D model is investigated based on aeroelastic optimization of global stiffness design for high-aspect-ratio wing... The relationship between stiffness distribution and aeroelastic performance for a beam-frame model and a3-D model is investigated based on aeroelastic optimization of global stiffness design for high-aspect-ratio wings.The sensitivity information of wing spanwise stiffness distribution with respect to the twist angle at wing tip,the vertical displacement at wing tip,and the flutter speed are obtained using a sensitivity method for both models.Then the relationship between stiffness distribution and aeroelastic performance is summarized to guide the design procedure.By using the genetic/sensitivity-based hybrid algorithm,an optimal solution satisfying the strength,aeroelastic and manufacturing constraints is obtained.It is found that the summarized guidance is well consistent with the optimal solution,thus providing a valuable design advice with efficiency.The study also shows that the aeroelastic-optimization-based global stiffness design procedure can obtain the optimal solution under multiple constraints with high efficiency and precision,thereby having a strong application value in engineering. 展开更多
关键词 aeroelastic high-aspect-ratio wing stiffness design structural optimization sensitivity analysis
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部