This paper deals with the aeroelastic tailoring of aeronautical composite wing surfaces. The objective function is structural weight. Multi constraints, such as displacements, flutter speed and gauge requirements, are...This paper deals with the aeroelastic tailoring of aeronautical composite wing surfaces. The objective function is structural weight. Multi constraints, such as displacements, flutter speed and gauge requirements, are taken into consideration. Finite element method is used to the static analysis. Natural vibration modes are obtained by the spectral transformation Lanczos method. Subsonic doublet lattice method is used to obtain the unsteady aerodynamics.The critical flutter speed is generated by V-g method.The optimal problem is solved by the feasible direction method.The thickness of the composite wing skin is simulated by bicubic polynomials, whose coefficients combined with the cross-sectional areas or thicknesses of other finite elements are the design variables. The scale of the problem is reduced by variable linkage. Derivative analysis is performed analytically.Two composite wing boxes and a swept-back composite wing are optimized at the end of the paper.展开更多
High-performance five-axis computer numerical control machine tools are widely used in the processing of Aeronautical Structural parts. With the increase of service life, the precision of CNC machine tools equipped by...High-performance five-axis computer numerical control machine tools are widely used in the processing of Aeronautical Structural parts. With the increase of service life, the precision of CNC machine tools equipped by aeronautical manufacturing enterprises is declining day by day, while the new generation of aircraft structural parts <span style="font-family:Verdana;">are</span><span style="font-family:Verdana;"> developing towards integration, large-scale, complexity, thin-walled and lightweight. It is very easy to produce dimension overshoot and surface quality defects due to unstable processing technology. The machining accuracy of aircraft structural parts is also affected by complex factors such as cutting load, cutting stability, tool error, workpiece deformation, fixture deformation, etc. Because of the complexity of structure and characteristics of Aeronautical Structural parts, the consistency and stability of cutting process are poor. It is easy to cause machining accuracy problems due to tool wear, breakage and cutting chatter. Relevant scholars have carried out a lot of basic research on NC machining accuracy control and achieved fruitful results, but the research on NC machining accuracy control of Aeronautical structural parts is still less. This paper elaborates from three aspects: error modeling method of NC machine tools, error compensation method, prediction and control of machining accuracy, and combines the characteristics of Aeronautical Structural parts, the development trend and demand of NC machining accuracy control technology are put forward.</span>展开更多
文摘This paper deals with the aeroelastic tailoring of aeronautical composite wing surfaces. The objective function is structural weight. Multi constraints, such as displacements, flutter speed and gauge requirements, are taken into consideration. Finite element method is used to the static analysis. Natural vibration modes are obtained by the spectral transformation Lanczos method. Subsonic doublet lattice method is used to obtain the unsteady aerodynamics.The critical flutter speed is generated by V-g method.The optimal problem is solved by the feasible direction method.The thickness of the composite wing skin is simulated by bicubic polynomials, whose coefficients combined with the cross-sectional areas or thicknesses of other finite elements are the design variables. The scale of the problem is reduced by variable linkage. Derivative analysis is performed analytically.Two composite wing boxes and a swept-back composite wing are optimized at the end of the paper.
文摘High-performance five-axis computer numerical control machine tools are widely used in the processing of Aeronautical Structural parts. With the increase of service life, the precision of CNC machine tools equipped by aeronautical manufacturing enterprises is declining day by day, while the new generation of aircraft structural parts <span style="font-family:Verdana;">are</span><span style="font-family:Verdana;"> developing towards integration, large-scale, complexity, thin-walled and lightweight. It is very easy to produce dimension overshoot and surface quality defects due to unstable processing technology. The machining accuracy of aircraft structural parts is also affected by complex factors such as cutting load, cutting stability, tool error, workpiece deformation, fixture deformation, etc. Because of the complexity of structure and characteristics of Aeronautical Structural parts, the consistency and stability of cutting process are poor. It is easy to cause machining accuracy problems due to tool wear, breakage and cutting chatter. Relevant scholars have carried out a lot of basic research on NC machining accuracy control and achieved fruitful results, but the research on NC machining accuracy control of Aeronautical structural parts is still less. This paper elaborates from three aspects: error modeling method of NC machine tools, error compensation method, prediction and control of machining accuracy, and combines the characteristics of Aeronautical Structural parts, the development trend and demand of NC machining accuracy control technology are put forward.</span>