A continuous measurement of number size distributions and chemical composition of aerosol particles was conducted in Beijing in a dust storm event during 21-26 March 2001. The number concentration of coarse particles ...A continuous measurement of number size distributions and chemical composition of aerosol particles was conducted in Beijing in a dust storm event during 21-26 March 2001. The number concentration of coarse particles ( 〉2μm) increased more significantly than fine particles ( 〈2μm) during the dust storm due to dust weather, while the anthropogenic aerosols collected during the non-dust-storm period tended to be associated with fine particles. Elemental compositions were analyzed by using proton-induced X-ray emission (PIXE). The results show that 20 elements in the dust storm were much higher than in the non-dust-storm period. The calculated soil dust concentration during the dust storm was, on average, 251.8μg m^-3, while it was only 52.1μg m^-3 on non-dust-storm days. The enrichment factors for Mg, A1, P, K, Ca, Ti, Mn, Fe, C1, Cu, Pb, and Zn show small variations between the dust storm and the non-dust-storm period, while those for Ca, Ni and Cr in the dust storm were much lower than those in the non-dust-storm period due to significant local emission sources. A high concentration and enrichment factor for S were observed during the dust storm, which implies that the dust particles were contaminated by aerosol particles from anthropogenic emissions during the long-range transport. A statistical analysis shows that the elemental composition of particles collected during the dust storm in Beijing were better correlated with those of desert soil colleted from desert regions in Inner Mongolia. Air mass back-trajectory analysis further confirmed that this dust storm event could be identified as streaks of dust plumes originating from Inner Mongolia.展开更多
The different height mass concentrations of dust aerosol data from the atmosphere environment observation station (Ta- zhong Station) was continuously observed by instruments of Grimm 1.108, Thermo RP 1400a and TSP ...The different height mass concentrations of dust aerosol data from the atmosphere environment observation station (Ta- zhong Station) was continuously observed by instruments of Grimm 1.108, Thermo RP 1400a and TSP from January of 2009 to February of 2010 in the Taklimakan Desert hinterland. Results show that: (1) The mass concentration value of 80 m PMl0 was higher, but PM2.5 and PM1.0 concentrations at 80 m was obviously lower than 4 m PMl0, and the value of 80 m PM1.0 mass concentration was the lowest. (2) The PM mass concentrations gradually decreased from night to sunrise, with the lowest concentration at 08:00, with the mass concentration gradually increased, up to the highest concentration around 18:00, and then decreased again. It was exactly the same with the changes of wind speed. (3) The high monthly average mass concentration of TSP mainly appeared from March to September, and the highest concentration was in April and May, subsequently gradually decreased. Also, March-September was a period with high value area of PM monthly average mass concentration, with the highest monthly average mass concentration of 846.0 p.g/m3 for 4 m PM^0 appeared in May. The concentration of PM10 was much higher than those of PM2.5 and PM1.0 at 80 m. There is a small difference between the concentration of PM2.5 and PM~ 0. Dust weather was the main factor which influenced the concentration content of the different diameter dust aerosol, and the more dust weather days, the higher content of coarse particle, conversely, fine particle was more. (4) The mass concentration of different diameter aerosols had the following sequence during dust weather: clear day 〈 blowing dust 〈 floating and blowing dust 〈 sandstorm. In different dust weather, the value of PM^o/TSP in fine weather was higher than that in floating weather, and much higher than those in blowing dust and sandstorm weather. (5) During the dust weather process, dust aerosol concentration gradually decreased with particle size decreasing. The dust aerosol mass concentration at different heights and diameter would have a peak value area every 3-4 days according to the strengthening process of dust weather.展开更多
The structure of atmospheric boundary layer determines the ability of atmospheric dispersion and has an essential impact on airborne aerosols.In this paper,the data of a radio sounding experiment held in Dongguan Nati...The structure of atmospheric boundary layer determines the ability of atmospheric dispersion and has an essential impact on airborne aerosols.In this paper,the data of a radio sounding experiment held in Dongguan National Meteorological Observation Station,which is in a coastal city in Pearl River Delta,as well as the data of atmospheric aerosols,were utilized in order to analyze the characteristics of atmospheric boundary layer and its effects on surface aerosol concentrations.The results are showed at follows:the local circulations,associated with dominant winds,made complex structures of atmospheric layers,as the cold air and systematic winds weakened in the end of a cold air event.Weakened wind shears and inversion layers,especially a strong near-surface inversion layer,remarkably diminished the atmospheric diffusion abilities and facilitated an especially high concentration of surface aerosols.The convergence line or weak shear line of sea breeze in the ground level helps weaken the atmospheric diffusion abilities and results in atmospheric aerosols accumulation.展开更多
Under bilateral cooperation between the United States of America and the People's Republic of China, a series of research cruises were conducted over the western Pacific Ocean. It was found that a) the non-sea-sal...Under bilateral cooperation between the United States of America and the People's Republic of China, a series of research cruises were conducted over the western Pacific Ocean. It was found that a) the non-sea-salt sulfate aerosol particles are the major source of cloud condensation nuclei, b) the population of clouds and the total albedo are proportional to the concentration of condensation nuclei and consequently to the concentration of the non-sea-salt aerosol particles, and c) the amount of rainfall is inversely proportional to the concentration of non-sea-salt sulfate aerosol particles. It seems that anthropogenic sulfate aerosol particles affect the regional planetary albedo and climate and that the contribution from biogenically derived sulfate aerosol particles is of lesser importance.展开更多
Surface measurements of aerosol physical properties were made at Anantapur (14.62°N, 77.65°E, 331 m a.s.l), a semiarid rural site in India, during August 2008-July 2009. Measurements included the segregate...Surface measurements of aerosol physical properties were made at Anantapur (14.62°N, 77.65°E, 331 m a.s.l), a semiarid rural site in India, during August 2008-July 2009. Measurements included the segregated sizes of aerosolsas as well as total mass concentration and size distributions of aerosols measured at low relative humidity (RH〈75%) using a Quartz Crystal Microbalance (QCM) in the 25-0.05 um aerodynamic diameter range. The hourly average total surface aerosol mass concentration in a day varied from 15 to 70 ug m-3, with a mean value of 34.02±9.05 ug m-3 for the entire study period. A clear diurnal pattern appeared in coarse, accumulation and nucleation-mode particle concentrations, with two local maxima occurring in early morning and late evening hours. The concentration of coarse-mode particles was high during the summer season, with a maximum concentration of 11.81±0.98 ug m-3 in the month of April, whereas accumulationmode concentration was observed to be high in the winter period contributed 〉68% to the total aerosol mass concentration. Accumulation aerosol mass fraction, Af (= Ma/Mt) was highest during winter (mean value of Af -0.80) and lowest (Af - 0.64) during the monsoon season. The regression analysis shows that both Reff and Rm are dependent on coarse-mode aerosols. The relationship between the simultaneous measurements of daily mean aerosol optical depth at 500 nm (AOD500) and PM2.5 mass concentration ([PM2.5]) shows that surface-level aerosol mass concentration increases with the increase in columnar aerosol optical depth over the observation period.展开更多
Elemental carbon(or black carbon)(EC or BC)aerosols emitted by biomass burning and fossil fuel combustion could cause notable climate forcing.Southern Hemisphere biomass burning emissions have contributed substantiall...Elemental carbon(or black carbon)(EC or BC)aerosols emitted by biomass burning and fossil fuel combustion could cause notable climate forcing.Southern Hemisphere biomass burning emissions have contributed substantially to EC deposition in Antarctica.Here,we present the seasonal variation of EC determined from aerosol samples acquired at Zhongshan Station(ZSS),East Antarctica.The concentration of EC in the atmosphere varied between 0.02 and 257.81 ng·m^(-3)with a mean value of 44.87±48.92 ng·m^(-3).The concentration of EC aerosols reached its peak in winter(59.04 ng·m^(-3))and was lowest(27.26 ng·m^(-3))in summer.Back trajectory analysis showed that biomass burning in southern South America was the major source of the EC found at ZSS,although some of it was derived from southern Australia,especially during winter.The 2019–2020 Australian bush fires had some influence on EC deposition at ZSS,especially during 2019,but the contribution diminished in 2020,leaving southern South America as the dominant source of EC.展开更多
In summer and winter, 1987,and in spring and autumn, 1988, the concentrations and size distribution of marine aerosols were measured over the East China Sea and the South Japan Sea. This paper deals with the study on ...In summer and winter, 1987,and in spring and autumn, 1988, the concentrations and size distribution of marine aerosols were measured over the East China Sea and the South Japan Sea. This paper deals with the study on the seasonal variation of the marine aerosols with the meteorological parameters, the differences and the relations between the marine and continental aerosols. The results show that the marine aerosol concentrations and size distribution over the East China Sea have distinct seasonal change characteristics, which may be attributed to the East Asian atmospheric circulation. The size distribution is discussed by using a three-parameter size distribution model.展开更多
Atmospheric aerosol concentrations have been found to change constantly due to the influence of source,winds and human activities over short time periods.This has proved to be a constraint to the study of varied aeros...Atmospheric aerosol concentrations have been found to change constantly due to the influence of source,winds and human activities over short time periods.This has proved to be a constraint to the study of varied aerosol concentrations in urban atmosphere alongside changing relative humidity and how it affects visibility and aerosol particle size distribution.In this research simulation was carried out using Optical Properties of Aerosols and Clouds(OPAC 4.0)average concentration setup for relative humidity(RH)0-99%at visible wavelength 0.4-0.8μm to vary the concentrations of three aerosol components:WASO(Water-soluble),INSO(Insoluble)and SOOT.The Angstrom exponents(α),the curvatures(α2)and atmospheric turbidities(β)were obtained from the regression analysis of Kaufman’s first and second order polynomial equations for visibility.The research determined the mean exponent of the aerosol size growth curve(μ)from the effective hygroscopic growth(geff)and the humidification factors(γ)from visibility enhancement f(RH,λ).The mean exponent of aerosol size distributions(υ)was determined fromμandγ.The results showed that with varied WASO,INSO and SOOT concentrations respectively at different RH,aerosol particle size distributions showed bimodal characteristics with dominance of fine mode particles.Hazy atmospheric conditions prevailed with increasing turbidity.展开更多
In 1999 aerosol samples were collected by cascade at Meteorological Tower in Beijing. The 12 group aerosol samples obtained were analyzed using PIXE method, which resulted in 20 elemental concentrations and size dist...In 1999 aerosol samples were collected by cascade at Meteorological Tower in Beijing. The 12 group aerosol samples obtained were analyzed using PIXE method, which resulted in 20 elemental concentrations and size distribution of elemental concentrations. From the observation, the elemental concentrations, size distribution of elemental concentrations and their variations are analyzed. It shows that concentrations of the most elements in aerosols increase greatly compared with those in the past except that the concentrations of V, K, Sr, and the source of aerosols has changed greatly in the past decade. Fine mode aerosols increase more rapidly in the past decade, which may be due to the contribution of coal combustion and automobile exhaust. Pb content in aerosol is much higher than that at the beginning of 1980s, and has a decreasing trend in recent years because of using non leaded gasoline.展开更多
The objective of this study was to characterize the mass concentration and chemical composition of aerosol particles(PM2.5) collected at Tongliao(Inner Mongolia Autonomous Region, China), a site in Horqin Sand-lan...The objective of this study was to characterize the mass concentration and chemical composition of aerosol particles(PM2.5) collected at Tongliao(Inner Mongolia Autonomous Region, China), a site in Horqin Sand-land in northeast China. During spring 2005, the mass concentration for PM2.5 was (126±71)μg/m^3 in average. Five dust storm events were monitored with higher concentration of (255 ± 77)μg/m^3 in average than the non dusty days of (106 ± 44)μg/m^3. Concentrations for 20 elements were obtained by the PIXE method. Mass concentrations of ALl, Mg, Si, K, Ca, Ti, Mn, and V, which increased with the PM2.5 concentration, were higher than the pollution elements (S, Cl, Zn, Ar, Se, Br, and Pb). Enrichment factor relative to crust material was also calculated, which showed dust trace elements were mainly from earth upper crust and pollution elements were dominated the anthropogenic aerosols. The Si/Al, Ca/Al, and Fe/Al ratios in PM2.5 samples at Tongliao were 4.07, 0.94, and 0.82, respectively, which were remarkably different with those on other source regions, such as "Western desert source region", "North desert source region" and central Asia source. Air mass back-trajectory analysis identified three kinds of general pathways were associated with the aerosol particle transport to Tongliao, but have the similar elemental ratios, implying that elemental signatures for dust aerosol from Horqin Sand-land were different with other regions.展开更多
Number concentration and size distribution of atmospheric aerosols were measured in Beijing by an optical particle counter. The relationship between aerosol size distribution and relative humidity is discussed. The re...Number concentration and size distribution of atmospheric aerosols were measured in Beijing by an optical particle counter. The relationship between aerosol size distribution and relative humidity is discussed. The results show that the size distribution, diurnal variation, daily variation of atmospheric aerosols have a good relation to relative humidity and Richardson number. Key words Atmospheric aerosol - Number concentration - Size distribution - Relative humidity - Richardson number This work is financially supported by NKBRSF Project (G1999043400), Knowledge Creative Project (8-2101 and 82303) founded by TAP, CAS.The authors would like to express their thanks to Prof. Zhang Wen for his work in this observation.展开更多
Atmospheric trace metals (Cu, Zn, Cd, Pb, Fe, V, and Cr), As, A1 and Na in marine aerosols were studied over the Southern Ocean during the 28th Chinese National Antarctic Research Expedition. Fe was the most abundan...Atmospheric trace metals (Cu, Zn, Cd, Pb, Fe, V, and Cr), As, A1 and Na in marine aerosols were studied over the Southern Ocean during the 28th Chinese National Antarctic Research Expedition. Fe was the most abundant of the analyzed trace metals, with an average concentration of 28.824 ng.m3. V and Zn concentrations were also high, and their average concentrations were 5.541 ng.m^3 and 2.584 ng.m^-3, respectively. Although sea spray significantly influenced the marine aerosol particles measured (Na had the highest concentrations of the analyzed elements, with an average concentration of 2.65 μg.m^-3), multivariate analyses (enrichment factor and principal components analysis) indicated that most of the elements were not associated with oceanic sources. Over the Southern Ocean, Fe, Cd, As, AI and Cr in the aerosols mainly originated from crustal sources, while Cu, Pb, V and Zn originated from crustal sources and anthropogenic emissions. The enrichment factors (EFcrust) for most elements (Fe, Al, As, Cr, Cd, Cu and V) were much lower in the northern latitudes, indicating that when the sampling occurred closer to land the concentrations of these elements in aerosols were strongly affected by terrestrial crustal sources.展开更多
Aerosol particles over the coastal area are subject to the modification of their chemical composition during their transport and diffusion. For examining the modification, the marine aerosol particles are collected at...Aerosol particles over the coastal area are subject to the modification of their chemical composition during their transport and diffusion. For examining the modification, the marine aerosol particles are collected at an island, East China Sea. Comparison of elemental composition of the marine aerosols with that of the samples collected at a coastal site, e.g. in Shanghai, was made. The results of chemical analysis show that the loss of chlorine component in aerosol particles is one of the main characteristics in the course of diffusion of marine aerosols into the coastal continent. Sulphur is a dominant component for fine particles in both marine and coastal aerosols. The relation of particle number concentration and particle size distribution to the meteorological conditions was discussed briefly. These results can be used as a reference in the estimation of equivalent refractive index of the aerosols for radiation transfer.展开更多
Based on observing data of atmospheric aerosol in the north suburban area of Nanjing from September to November in 2007, the number concentration, mass concentration, size distribution and optical properties of atmosp...Based on observing data of atmospheric aerosol in the north suburban area of Nanjing from September to November in 2007, the number concentration, mass concentration, size distribution and optical properties of atmospheric aerosol particles and the relation to meteorological factors were analyzed, and their concentration and optical properties during hazy and non-hazy days were compared. The results showed that aerosol pollution was serious in autumn in this region; the deterioration of visibility had close correlation to fine particles, that is, the average number concen- tration of aerosol was 17 044.2 cm^-3, in which ultra fine particles accounted for 64.3%; the daily average mass concentration of PM2.5 was 281 μg/m3, and the ratio of PM2.5 to PM10 was 0.74; the accumulation mode particles dominated in number and surface concentration distributions, while the volume concentration distribution presented a main peak at size of 1.0 -2.8 μm; fine particles increased during hazy days compared with non-hazy days; the scatter coefficient closely correlated to the particle size, concentration and atmospheric humidity. It was also indicated that meteorological conditions played a critical role in formation of hazy weather, that is, weak large-scale weather systems, low wind speed, high humidity and strong inversion were favorable conditions for hazy weather in autumn.展开更多
Averaged fractional composition of aerosol in Vietnam and Belarus was obtained and the maps of the column on near-ground aerosol content were built on the basics of model calculations. The results show the complexity ...Averaged fractional composition of aerosol in Vietnam and Belarus was obtained and the maps of the column on near-ground aerosol content were built on the basics of model calculations. The results show the complexity of the geographic ASEAN areas. It may cause variable of climate in local.展开更多
In order to eliminate influence of the carriers on the evaporation of rare earth elements in DC arc,a de- vice which introduces axially the sample aerosol has been designed to study the effects of controlled-atmos- ph...In order to eliminate influence of the carriers on the evaporation of rare earth elements in DC arc,a de- vice which introduces axially the sample aerosol has been designed to study the effects of controlled-atmos- phere,discharge current,electrode polarity and introduction direction of aerosol on the emission of rare earth elements in DC arc discharge.The influence of various matrices and carriers on the line density and excitation condition of rare earth elements have also been studied,then the related excitation mechnism is proposed.展开更多
This paper summarizes atmospheric aerosol concentrations of 5 stratospheric balloon soundings during the period from 1984 to 1994. Aerosol-rich layers in the troposphere were detected and the causes were analyzed. Th...This paper summarizes atmospheric aerosol concentrations of 5 stratospheric balloon soundings during the period from 1984 to 1994. Aerosol-rich layers in the troposphere were detected and the causes were analyzed. The main results are as follows: (1) the vertical distribution of the atmospheric aerosol is affected by atmospheric dynamic processes, humidity, etc.; (2) the tropospheric column concentrations of aerosol were 72.2×105, 20.2×105, 20.7×105 and 34.4×105 cm-2 and occupying 81%, 61% and 60% of the 0-to-30 km aerosol column, on Aug. 23, 1984, Aug. 22, 1993, Sept. 12, 1993 and Sept. 15, 1994, respectively; (3) the effect of volcano eruption was still evident in the aerosol profiles, 28 and 27 months after the El Chichon and Pinatubo eruption; (4) the aerosol concentration in the troposphere did not decrease at all heights as atmospheric aerosol model.展开更多
By utilizing observational data from a 325 m tower of the Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences (CAS) on March 19-29, 2001 and August 11-25, 2003, a comprehensive study was conducted on t...By utilizing observational data from a 325 m tower of the Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences (CAS) on March 19-29, 2001 and August 11-25, 2003, a comprehensive study was conducted on the vertical dynamical and thermodynamic characteristics of the urban lower boundary layer (ULBL) and its relationship with aerosol concentration over Beijing. Firstly, a comparative analysis was made on the gradient data (wind, temperature and humidity), ultrasonic data (atmospheric turbulences) and air-quality observations at different tower heights (47, 120 and 280 m). Secondly, a diagnosis was made to reveal the major features of normalized variances of velocity and temperature, turbulence kinetic energy as well as their relationship with aerosol concentrations. Furthermore, the characteristics of the ULBL vertical structure and the TSP concentration/distribution variations during a sand/dust weather process were also analyzed. The outcome of the study showed that under unstable stratification, the normalized variances of velocity (σu/u*, σv/u*, σw/u*) and temperature (σT/T*) at 47 and 120 m heights fit the Monin-Obukhov similarity (MOS) framework and the fitting formulas were given out accordingly. According to the stratification parameter (z′/L), the stable ULBL could be divided into 2 zones. With z′/L<0.1, it was a weakly stable zone and MOS framework was applicable. The other was a highly stable zone with z′/L>0.1 and the normalized velocity variances tended to increase along with higher stability, but it remained constant for normalized temperature variances. At daytime, the near-surface layer includes two heights of 47 and 120 m, while 280 m has been above it. The ULBL analysis in conjunction with a sand/dust weather process in Beijing in March 2001 indicated that the maximum concentration of Total Suspended Particulates (TSP) at 320 m reached 913.3 μg/m3 and the particles were transported from the upper to lower ULBL, which was apparently related to the development process of a low-level jet and its concomitant strong sinking motion.展开更多
Particulate mass concentration (PM10, PM2.5), aerosol number concentration (NOPC), aerosol size distribu-tion and atmospheric visibility were simultaneously measured in Beijing in the summer and winter of 2001. From t...Particulate mass concentration (PM10, PM2.5), aerosol number concentration (NOPC), aerosol size distribu-tion and atmospheric visibility were simultaneously measured in Beijing in the summer and winter of 2001. From the profuse data collected, the following conclusions can be drown: (1) there are two peaks for the average diurnal variations of PM10 and NOPC in the summer, an obvious valley can be seen between 12:30 and 15:00 for their average diurnal variation in the winter; (2) there is one single peak for the average diurnal variation of atmospheric visibility in the summer, while there are two peaks in the winter; (3) PM10 and NOPC are usually smaller in the summer than those in the winter; (4) the average visibility is much lower during 00:00~09:00 in the summer than that in the winter, because of the very high relative humidity and higher concentration of the large particles (r>1.25 mm) in the summer during the period; (5) aerosol size distributions usually depend closely on season and relative humidity at the same place.展开更多
A model for measuring aerosol mass concentration by an optical particle counter is presented using the conception of the average mass. In this model, to understand the meaning of the pulse height distribution of parti...A model for measuring aerosol mass concentration by an optical particle counter is presented using the conception of the average mass. In this model, to understand the meaning of the pulse height distribution of particles which is used to inverse mass concentration, the relationship among intensity distribution in the optical sensing volume, particle shape, and the pulse height distribution is discussed. To solve the instability of the equivalent factor, a novel two-step calibration method is proposed. The experimental results demonstrate that mass concentrations calculated by the model are in good agreement with those measured by a norm-referenced instrument. For samples of soot and air, the slopes of fitting lines of data points are 0.9582 and 0.9220, and the correlation coefficients are 0.9991 and 0.9965, respectively.展开更多
文摘A continuous measurement of number size distributions and chemical composition of aerosol particles was conducted in Beijing in a dust storm event during 21-26 March 2001. The number concentration of coarse particles ( 〉2μm) increased more significantly than fine particles ( 〈2μm) during the dust storm due to dust weather, while the anthropogenic aerosols collected during the non-dust-storm period tended to be associated with fine particles. Elemental compositions were analyzed by using proton-induced X-ray emission (PIXE). The results show that 20 elements in the dust storm were much higher than in the non-dust-storm period. The calculated soil dust concentration during the dust storm was, on average, 251.8μg m^-3, while it was only 52.1μg m^-3 on non-dust-storm days. The enrichment factors for Mg, A1, P, K, Ca, Ti, Mn, Fe, C1, Cu, Pb, and Zn show small variations between the dust storm and the non-dust-storm period, while those for Ca, Ni and Cr in the dust storm were much lower than those in the non-dust-storm period due to significant local emission sources. A high concentration and enrichment factor for S were observed during the dust storm, which implies that the dust particles were contaminated by aerosol particles from anthropogenic emissions during the long-range transport. A statistical analysis shows that the elemental composition of particles collected during the dust storm in Beijing were better correlated with those of desert soil colleted from desert regions in Inner Mongolia. Air mass back-trajectory analysis further confirmed that this dust storm event could be identified as streaks of dust plumes originating from Inner Mongolia.
基金supported by Natural Science Founda-tion of China(Nos.41375162,41175017,41175140)China Special Fund for Meteorological Research in the Public Interest(Nos.GYHY201006012,GYHY201106025)
文摘The different height mass concentrations of dust aerosol data from the atmosphere environment observation station (Ta- zhong Station) was continuously observed by instruments of Grimm 1.108, Thermo RP 1400a and TSP from January of 2009 to February of 2010 in the Taklimakan Desert hinterland. Results show that: (1) The mass concentration value of 80 m PMl0 was higher, but PM2.5 and PM1.0 concentrations at 80 m was obviously lower than 4 m PMl0, and the value of 80 m PM1.0 mass concentration was the lowest. (2) The PM mass concentrations gradually decreased from night to sunrise, with the lowest concentration at 08:00, with the mass concentration gradually increased, up to the highest concentration around 18:00, and then decreased again. It was exactly the same with the changes of wind speed. (3) The high monthly average mass concentration of TSP mainly appeared from March to September, and the highest concentration was in April and May, subsequently gradually decreased. Also, March-September was a period with high value area of PM monthly average mass concentration, with the highest monthly average mass concentration of 846.0 p.g/m3 for 4 m PM^0 appeared in May. The concentration of PM10 was much higher than those of PM2.5 and PM1.0 at 80 m. There is a small difference between the concentration of PM2.5 and PM~ 0. Dust weather was the main factor which influenced the concentration content of the different diameter dust aerosol, and the more dust weather days, the higher content of coarse particle, conversely, fine particle was more. (4) The mass concentration of different diameter aerosols had the following sequence during dust weather: clear day 〈 blowing dust 〈 floating and blowing dust 〈 sandstorm. In different dust weather, the value of PM^o/TSP in fine weather was higher than that in floating weather, and much higher than those in blowing dust and sandstorm weather. (5) During the dust weather process, dust aerosol concentration gradually decreased with particle size decreasing. The dust aerosol mass concentration at different heights and diameter would have a peak value area every 3-4 days according to the strengthening process of dust weather.
基金National Natural science foundation of China(41205123)National Basic Research Program(2011CB403403)+1 种基金Southern China Regional Meteorological Center Science and Technology Project(GRMC2014Z03)Science and Technology Innovation Team Plan of Guangdong Meteorological Bureau(201103)
文摘The structure of atmospheric boundary layer determines the ability of atmospheric dispersion and has an essential impact on airborne aerosols.In this paper,the data of a radio sounding experiment held in Dongguan National Meteorological Observation Station,which is in a coastal city in Pearl River Delta,as well as the data of atmospheric aerosols,were utilized in order to analyze the characteristics of atmospheric boundary layer and its effects on surface aerosol concentrations.The results are showed at follows:the local circulations,associated with dominant winds,made complex structures of atmospheric layers,as the cold air and systematic winds weakened in the end of a cold air event.Weakened wind shears and inversion layers,especially a strong near-surface inversion layer,remarkably diminished the atmospheric diffusion abilities and facilitated an especially high concentration of surface aerosols.The convergence line or weak shear line of sea breeze in the ground level helps weaken the atmospheric diffusion abilities and results in atmospheric aerosols accumulation.
文摘Under bilateral cooperation between the United States of America and the People's Republic of China, a series of research cruises were conducted over the western Pacific Ocean. It was found that a) the non-sea-salt sulfate aerosol particles are the major source of cloud condensation nuclei, b) the population of clouds and the total albedo are proportional to the concentration of condensation nuclei and consequently to the concentration of the non-sea-salt aerosol particles, and c) the amount of rainfall is inversely proportional to the concentration of non-sea-salt sulfate aerosol particles. It seems that anthropogenic sulfate aerosol particles affect the regional planetary albedo and climate and that the contribution from biogenically derived sulfate aerosol particles is of lesser importance.
文摘Surface measurements of aerosol physical properties were made at Anantapur (14.62°N, 77.65°E, 331 m a.s.l), a semiarid rural site in India, during August 2008-July 2009. Measurements included the segregated sizes of aerosolsas as well as total mass concentration and size distributions of aerosols measured at low relative humidity (RH〈75%) using a Quartz Crystal Microbalance (QCM) in the 25-0.05 um aerodynamic diameter range. The hourly average total surface aerosol mass concentration in a day varied from 15 to 70 ug m-3, with a mean value of 34.02±9.05 ug m-3 for the entire study period. A clear diurnal pattern appeared in coarse, accumulation and nucleation-mode particle concentrations, with two local maxima occurring in early morning and late evening hours. The concentration of coarse-mode particles was high during the summer season, with a maximum concentration of 11.81±0.98 ug m-3 in the month of April, whereas accumulationmode concentration was observed to be high in the winter period contributed 〉68% to the total aerosol mass concentration. Accumulation aerosol mass fraction, Af (= Ma/Mt) was highest during winter (mean value of Af -0.80) and lowest (Af - 0.64) during the monsoon season. The regression analysis shows that both Reff and Rm are dependent on coarse-mode aerosols. The relationship between the simultaneous measurements of daily mean aerosol optical depth at 500 nm (AOD500) and PM2.5 mass concentration ([PM2.5]) shows that surface-level aerosol mass concentration increases with the increase in columnar aerosol optical depth over the observation period.
基金provided by the State Key Laboratory of Cryospheric Science Supporting Fund in China(Grant no.SKLCS-ZZ-2020)Innovative Research Group in China(Grant no.1110000001)+1 种基金Strategic Priority Research Program of the Chinese Academy of Sciences(Grant no.XDA19070501)National Natural Science Foundation of China(Grant nos.41671063,41701071,41671073)。
文摘Elemental carbon(or black carbon)(EC or BC)aerosols emitted by biomass burning and fossil fuel combustion could cause notable climate forcing.Southern Hemisphere biomass burning emissions have contributed substantially to EC deposition in Antarctica.Here,we present the seasonal variation of EC determined from aerosol samples acquired at Zhongshan Station(ZSS),East Antarctica.The concentration of EC in the atmosphere varied between 0.02 and 257.81 ng·m^(-3)with a mean value of 44.87±48.92 ng·m^(-3).The concentration of EC aerosols reached its peak in winter(59.04 ng·m^(-3))and was lowest(27.26 ng·m^(-3))in summer.Back trajectory analysis showed that biomass burning in southern South America was the major source of the EC found at ZSS,although some of it was derived from southern Australia,especially during winter.The 2019–2020 Australian bush fires had some influence on EC deposition at ZSS,especially during 2019,but the contribution diminished in 2020,leaving southern South America as the dominant source of EC.
文摘In summer and winter, 1987,and in spring and autumn, 1988, the concentrations and size distribution of marine aerosols were measured over the East China Sea and the South Japan Sea. This paper deals with the study on the seasonal variation of the marine aerosols with the meteorological parameters, the differences and the relations between the marine and continental aerosols. The results show that the marine aerosol concentrations and size distribution over the East China Sea have distinct seasonal change characteristics, which may be attributed to the East Asian atmospheric circulation. The size distribution is discussed by using a three-parameter size distribution model.
文摘Atmospheric aerosol concentrations have been found to change constantly due to the influence of source,winds and human activities over short time periods.This has proved to be a constraint to the study of varied aerosol concentrations in urban atmosphere alongside changing relative humidity and how it affects visibility and aerosol particle size distribution.In this research simulation was carried out using Optical Properties of Aerosols and Clouds(OPAC 4.0)average concentration setup for relative humidity(RH)0-99%at visible wavelength 0.4-0.8μm to vary the concentrations of three aerosol components:WASO(Water-soluble),INSO(Insoluble)and SOOT.The Angstrom exponents(α),the curvatures(α2)and atmospheric turbidities(β)were obtained from the regression analysis of Kaufman’s first and second order polynomial equations for visibility.The research determined the mean exponent of the aerosol size growth curve(μ)from the effective hygroscopic growth(geff)and the humidification factors(γ)from visibility enhancement f(RH,λ).The mean exponent of aerosol size distributions(υ)was determined fromμandγ.The results showed that with varied WASO,INSO and SOOT concentrations respectively at different RH,aerosol particle size distributions showed bimodal characteristics with dominance of fine mode particles.Hazy atmospheric conditions prevailed with increasing turbidity.
文摘In 1999 aerosol samples were collected by cascade at Meteorological Tower in Beijing. The 12 group aerosol samples obtained were analyzed using PIXE method, which resulted in 20 elemental concentrations and size distribution of elemental concentrations. From the observation, the elemental concentrations, size distribution of elemental concentrations and their variations are analyzed. It shows that concentrations of the most elements in aerosols increase greatly compared with those in the past except that the concentrations of V, K, Sr, and the source of aerosols has changed greatly in the past decade. Fine mode aerosols increase more rapidly in the past decade, which may be due to the contribution of coal combustion and automobile exhaust. Pb content in aerosol is much higher than that at the beginning of 1980s, and has a decreasing trend in recent years because of using non leaded gasoline.
文摘The objective of this study was to characterize the mass concentration and chemical composition of aerosol particles(PM2.5) collected at Tongliao(Inner Mongolia Autonomous Region, China), a site in Horqin Sand-land in northeast China. During spring 2005, the mass concentration for PM2.5 was (126±71)μg/m^3 in average. Five dust storm events were monitored with higher concentration of (255 ± 77)μg/m^3 in average than the non dusty days of (106 ± 44)μg/m^3. Concentrations for 20 elements were obtained by the PIXE method. Mass concentrations of ALl, Mg, Si, K, Ca, Ti, Mn, and V, which increased with the PM2.5 concentration, were higher than the pollution elements (S, Cl, Zn, Ar, Se, Br, and Pb). Enrichment factor relative to crust material was also calculated, which showed dust trace elements were mainly from earth upper crust and pollution elements were dominated the anthropogenic aerosols. The Si/Al, Ca/Al, and Fe/Al ratios in PM2.5 samples at Tongliao were 4.07, 0.94, and 0.82, respectively, which were remarkably different with those on other source regions, such as "Western desert source region", "North desert source region" and central Asia source. Air mass back-trajectory analysis identified three kinds of general pathways were associated with the aerosol particle transport to Tongliao, but have the similar elemental ratios, implying that elemental signatures for dust aerosol from Horqin Sand-land were different with other regions.
基金This work is financially supported by NKBRSF Project !(G1999043400) Knowledge Creative Project(8-2101 and 82303) founded by
文摘Number concentration and size distribution of atmospheric aerosols were measured in Beijing by an optical particle counter. The relationship between aerosol size distribution and relative humidity is discussed. The results show that the size distribution, diurnal variation, daily variation of atmospheric aerosols have a good relation to relative humidity and Richardson number. Key words Atmospheric aerosol - Number concentration - Size distribution - Relative humidity - Richardson number This work is financially supported by NKBRSF Project (G1999043400), Knowledge Creative Project (8-2101 and 82303) founded by TAP, CAS.The authors would like to express their thanks to Prof. Zhang Wen for his work in this observation.
基金supported by the National Natural Science Foundation of China (Grant nos. 41305133, 41230529, and 41476172)the Chinese Polar Environment Comprehensive Investigation& Assessment Programs (Grant no. CHINARE2012-15 for 01-04-02, 0201, and 03-04-02)Chinese International Cooperation Projects, Chinese Arctic and Antarctic Adminstration (Grant nos. 2015DFG22010, IC201201, IC201308, and IC201513)
文摘Atmospheric trace metals (Cu, Zn, Cd, Pb, Fe, V, and Cr), As, A1 and Na in marine aerosols were studied over the Southern Ocean during the 28th Chinese National Antarctic Research Expedition. Fe was the most abundant of the analyzed trace metals, with an average concentration of 28.824 ng.m3. V and Zn concentrations were also high, and their average concentrations were 5.541 ng.m^3 and 2.584 ng.m^-3, respectively. Although sea spray significantly influenced the marine aerosol particles measured (Na had the highest concentrations of the analyzed elements, with an average concentration of 2.65 μg.m^-3), multivariate analyses (enrichment factor and principal components analysis) indicated that most of the elements were not associated with oceanic sources. Over the Southern Ocean, Fe, Cd, As, AI and Cr in the aerosols mainly originated from crustal sources, while Cu, Pb, V and Zn originated from crustal sources and anthropogenic emissions. The enrichment factors (EFcrust) for most elements (Fe, Al, As, Cr, Cd, Cu and V) were much lower in the northern latitudes, indicating that when the sampling occurred closer to land the concentrations of these elements in aerosols were strongly affected by terrestrial crustal sources.
文摘Aerosol particles over the coastal area are subject to the modification of their chemical composition during their transport and diffusion. For examining the modification, the marine aerosol particles are collected at an island, East China Sea. Comparison of elemental composition of the marine aerosols with that of the samples collected at a coastal site, e.g. in Shanghai, was made. The results of chemical analysis show that the loss of chlorine component in aerosol particles is one of the main characteristics in the course of diffusion of marine aerosols into the coastal continent. Sulphur is a dominant component for fine particles in both marine and coastal aerosols. The relation of particle number concentration and particle size distribution to the meteorological conditions was discussed briefly. These results can be used as a reference in the estimation of equivalent refractive index of the aerosols for radiation transfer.
文摘Based on observing data of atmospheric aerosol in the north suburban area of Nanjing from September to November in 2007, the number concentration, mass concentration, size distribution and optical properties of atmospheric aerosol particles and the relation to meteorological factors were analyzed, and their concentration and optical properties during hazy and non-hazy days were compared. The results showed that aerosol pollution was serious in autumn in this region; the deterioration of visibility had close correlation to fine particles, that is, the average number concen- tration of aerosol was 17 044.2 cm^-3, in which ultra fine particles accounted for 64.3%; the daily average mass concentration of PM2.5 was 281 μg/m3, and the ratio of PM2.5 to PM10 was 0.74; the accumulation mode particles dominated in number and surface concentration distributions, while the volume concentration distribution presented a main peak at size of 1.0 -2.8 μm; fine particles increased during hazy days compared with non-hazy days; the scatter coefficient closely correlated to the particle size, concentration and atmospheric humidity. It was also indicated that meteorological conditions played a critical role in formation of hazy weather, that is, weak large-scale weather systems, low wind speed, high humidity and strong inversion were favorable conditions for hazy weather in autumn.
文摘Averaged fractional composition of aerosol in Vietnam and Belarus was obtained and the maps of the column on near-ground aerosol content were built on the basics of model calculations. The results show the complexity of the geographic ASEAN areas. It may cause variable of climate in local.
文摘In order to eliminate influence of the carriers on the evaporation of rare earth elements in DC arc,a de- vice which introduces axially the sample aerosol has been designed to study the effects of controlled-atmos- phere,discharge current,electrode polarity and introduction direction of aerosol on the emission of rare earth elements in DC arc discharge.The influence of various matrices and carriers on the line density and excitation condition of rare earth elements have also been studied,then the related excitation mechnism is proposed.
文摘This paper summarizes atmospheric aerosol concentrations of 5 stratospheric balloon soundings during the period from 1984 to 1994. Aerosol-rich layers in the troposphere were detected and the causes were analyzed. The main results are as follows: (1) the vertical distribution of the atmospheric aerosol is affected by atmospheric dynamic processes, humidity, etc.; (2) the tropospheric column concentrations of aerosol were 72.2×105, 20.2×105, 20.7×105 and 34.4×105 cm-2 and occupying 81%, 61% and 60% of the 0-to-30 km aerosol column, on Aug. 23, 1984, Aug. 22, 1993, Sept. 12, 1993 and Sept. 15, 1994, respectively; (3) the effect of volcano eruption was still evident in the aerosol profiles, 28 and 27 months after the El Chichon and Pinatubo eruption; (4) the aerosol concentration in the troposphere did not decrease at all heights as atmospheric aerosol model.
文摘By utilizing observational data from a 325 m tower of the Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences (CAS) on March 19-29, 2001 and August 11-25, 2003, a comprehensive study was conducted on the vertical dynamical and thermodynamic characteristics of the urban lower boundary layer (ULBL) and its relationship with aerosol concentration over Beijing. Firstly, a comparative analysis was made on the gradient data (wind, temperature and humidity), ultrasonic data (atmospheric turbulences) and air-quality observations at different tower heights (47, 120 and 280 m). Secondly, a diagnosis was made to reveal the major features of normalized variances of velocity and temperature, turbulence kinetic energy as well as their relationship with aerosol concentrations. Furthermore, the characteristics of the ULBL vertical structure and the TSP concentration/distribution variations during a sand/dust weather process were also analyzed. The outcome of the study showed that under unstable stratification, the normalized variances of velocity (σu/u*, σv/u*, σw/u*) and temperature (σT/T*) at 47 and 120 m heights fit the Monin-Obukhov similarity (MOS) framework and the fitting formulas were given out accordingly. According to the stratification parameter (z′/L), the stable ULBL could be divided into 2 zones. With z′/L<0.1, it was a weakly stable zone and MOS framework was applicable. The other was a highly stable zone with z′/L>0.1 and the normalized velocity variances tended to increase along with higher stability, but it remained constant for normalized temperature variances. At daytime, the near-surface layer includes two heights of 47 and 120 m, while 280 m has been above it. The ULBL analysis in conjunction with a sand/dust weather process in Beijing in March 2001 indicated that the maximum concentration of Total Suspended Particulates (TSP) at 320 m reached 913.3 μg/m3 and the particles were transported from the upper to lower ULBL, which was apparently related to the development process of a low-level jet and its concomitant strong sinking motion.
文摘Particulate mass concentration (PM10, PM2.5), aerosol number concentration (NOPC), aerosol size distribu-tion and atmospheric visibility were simultaneously measured in Beijing in the summer and winter of 2001. From the profuse data collected, the following conclusions can be drown: (1) there are two peaks for the average diurnal variations of PM10 and NOPC in the summer, an obvious valley can be seen between 12:30 and 15:00 for their average diurnal variation in the winter; (2) there is one single peak for the average diurnal variation of atmospheric visibility in the summer, while there are two peaks in the winter; (3) PM10 and NOPC are usually smaller in the summer than those in the winter; (4) the average visibility is much lower during 00:00~09:00 in the summer than that in the winter, because of the very high relative humidity and higher concentration of the large particles (r>1.25 mm) in the summer during the period; (5) aerosol size distributions usually depend closely on season and relative humidity at the same place.
基金the Doctor Creation Foundation of Nanjing University of Science and Technology
文摘A model for measuring aerosol mass concentration by an optical particle counter is presented using the conception of the average mass. In this model, to understand the meaning of the pulse height distribution of particles which is used to inverse mass concentration, the relationship among intensity distribution in the optical sensing volume, particle shape, and the pulse height distribution is discussed. To solve the instability of the equivalent factor, a novel two-step calibration method is proposed. The experimental results demonstrate that mass concentrations calculated by the model are in good agreement with those measured by a norm-referenced instrument. For samples of soot and air, the slopes of fitting lines of data points are 0.9582 and 0.9220, and the correlation coefficients are 0.9991 and 0.9965, respectively.